19 research outputs found

    Development of an in Vitro Rat Intestine Segmental Perfusion Model to Investigate Permeability and Predict Oral Fraction Absorbed

    Get PDF
    Purpose: The aims of the study are to develop and evaluate an in vitro rat intestine segmental perfusion model for the prediction of the oral fraction absorbed of compounds and to assess the ability of the model to study intestinal metabolism. Methods: The system consisted of a perfusion cell with a rat intestinal segment and three perfusion circulations (donor, receiver, and rinsing circulation). Lucifer yellow (LY) was applied as internal standard together with test compounds in the donor circulation. To validate the model, the permeability of eight noncongeneric passively absorbed drugs was determined. Intestinal N-demethylation of verapamil into norverapamil was followed in the donor and receiver circulations by high-performance liquid chromatography analysis. Results: The in vitro model allowed ranking of the tested compounds according to their in vivo absorption potential. The Spearman's correlation coefficient between the oral fraction absorbed in humans and the ratio of permeation coefficient of test compound to the permeation coefficient of LY within the same experiment was 0.98 (P < 0.01). Moreover, intestinal N-demethylation of verapamil, its permeation, and the permeation of its metabolite norverapamil could be assessed in parallel. Conclusions: Up to six permeation kinetics can be obtained per rat, and the method has shown to be a valuable tool to estimate human oral absorptio

    FUNCTIONAL EXPRESSION OF SINUSOIDAL DRUG TRANSPORTERS IN PRIMARY HUMAN AND RAT HEPATOCYTES

    No full text

    Differential regulation of sinusoidal and canalicular hepatic drug transporter expression by xenobiotics activating drug-sensing receptors in primary human hepatocytes.

    No full text
    International audienceSinusoidal and canalicular hepatic drug transporters constitute key factors involved in drug elimination from liver. Regulation of their expression via activation of xenosensors, such as aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), pregnane X receptor (PXR), and nuclear factor E2-related factor 2 (Nrf2), remains incompletely characterized. The present study was therefore designed to carefully analyze expression of major drug transporters in primary human hepatocytes exposed to dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD) (an AhR activator), rifampicin (RIF) (a PXR activator), phenobarbital (PB) (a CAR activator), and oltipraz (OPZ) (a Nrf2 activator), using mainly reverse transcription-real time polymerase chain reaction assays. With a threshold corresponding to a 1.5-fold factor change in mRNA levels, observed in at least three of seven independent human hepatocyte cultures, efflux transporters such as MDR1, MRP2 and BCRP were up-regulated by PB, RIF, and OPZ, whereas MRP3 was induced by OPZ and RIF. MDR1 and BCRP expression was also increased by TCDD- and RIF-augmented mRNA levels of the influx transporter OATP-C. Bile acid transporters, i.e., bile salt export pump and Na(+)-taurocholate cotransporting polypeptide, and the sinusoidal transporter, OAT2, were down-regulated by all the tested chemicals. Influx transporters such as OCT1, OATP-B, and OATP8 were repressed by PB and TCDD. PB also decreased MRP6 expression, whereas mRNA levels of OCT1 and OATP8 were down-regulated by RIF and OPZ, respectively. Taken together, these data establish a complex pattern of transporter regulation by xenobiotics in human hepatocytes, in addition to interindividual variability in responsiveness. This may deserve further attention with respect to drug-drug interactions and adverse effects of hepatic drugs

    Sphingolipid Metabolism Is Dysregulated at Transcriptomic and Metabolic Levels in the Spinal Cord of an Animal Model of Amyotrophic Lateral Sclerosis

    No full text
    International audienceLipid metabolism is drastically dysregulated in amyotrophic lateral sclerosis and impacts prognosis of patients. Animal models recapitulate alterations in the energy metabolism, including hypermetabolism and severe loss of adipose tissue. To gain insight into the molecular mechanisms underlying disease progression in amyotrophic lateral sclerosis, we have performed RNA-sequencing and lipidomic profiling in spinal cord of symptomatic SOD1G86R mice. Spinal transcriptome of SOD1G86R mice was characterized by differential expression of genes related to immune system, extracellular exosome, and lysosome. Hypothesis-driven identification of metabolites showed that lipids, including sphingomyelin(d18:0/26:1), ceramide(d18:1/22:0), and phosphatidylcholine(o-22:1/20:4) showed profound altered levels. A correlation between disease severity and gene expression or metabolite levels was found for sphingosine, ceramide(d18:1/26:0), Sgpp2, Sphk1, and Ugt8a. Joint-analysis revealed a significant enrichment of glycosphingolipid metabolism in SOD1G86R mice, due to the down-regulation of ceramide, glucosylceramide, and lactosylceramide and the overexpression of genes involved in their recycling in the lysosome. A drug-gene interaction database was interrogated to identify potential drugs able to modulate the dysregulated genes from the signaling pathway. Our results suggest that complex lipids are pivotally changed during the first phase of motor symptoms in an animal model of amyotrophic lateral sclerosis

    Peripheral tryptophan, serotonin, kynurenine, and their metabolites in major depression: A case–control study

    No full text
    International audienceAim: Tryptophan is the sole precursor of both peripherally and centrally produced serotonin and kynurenine. In depressed patients, tryptophan, serotonin, kynurenine, and their metabolite levels remain unclear. Therefore, peripheral tryptophan and metabolites of serotonin and kynurenine were investigated extensively in 173 patients suffering from a current major depressive episode (MDE) and compared to 214 healthy controls (HC).Methods: Fasting plasma levels of 11 peripheral metabolites were quantified: tryptophan, serotonin pathway (serotonin, its precursor 5-hydroxytryptophan and its metabolite 5-hydroxyindoleacetic acid), and kynurenine pathway (kynurenine and six of its metabolites: anthranilic acid, kynurenic acid, nicotinamide, picolinic acid, xanthurenic acid, and 3-hydroxyanthranilic acid).Results: Sixty (34.7%) patients were antidepressant-drug free. Tryptophan levels did not differ between MDE patients and HC. Serotonin and its precursor (5-hydroxytryptophan) levels were lower in MDE patients than in HC, whereas, its metabolite (5-hydroxyindoleacetic acid) levels were within the standard range. Kynurenine and four of its metabolites (kynurenic acid, nicotinamide, picolinic acid, and xanthurenic acid) were lower in MDE patients.Conclusion: Whilst the results of this study demonstrate an association between the metabolites studied and depression, conclusions about causality cannot be made. This study uses the largest ever sample of MDE patients, with an extensive assessment of peripheral tryptophan metabolism in plasma. These findings provide new insights into the peripheral signature of MDE. The reasons for these changes should be further investigated. These results might suggest new antidepressant therapeutic strategies

    Peripheral tryptophan, serotonin, kynurenine, and their metabolites in major depression: A case–control study

    No full text
    International audienceAim: Tryptophan is the sole precursor of both peripherally and centrally produced serotonin and kynurenine. In depressed patients, tryptophan, serotonin, kynurenine, and their metabolite levels remain unclear. Therefore, peripheral tryptophan and metabolites of serotonin and kynurenine were investigated extensively in 173 patients suffering from a current major depressive episode (MDE) and compared to 214 healthy controls (HC).Methods: Fasting plasma levels of 11 peripheral metabolites were quantified: tryptophan, serotonin pathway (serotonin, its precursor 5-hydroxytryptophan and its metabolite 5-hydroxyindoleacetic acid), and kynurenine pathway (kynurenine and six of its metabolites: anthranilic acid, kynurenic acid, nicotinamide, picolinic acid, xanthurenic acid, and 3-hydroxyanthranilic acid).Results: Sixty (34.7%) patients were antidepressant-drug free. Tryptophan levels did not differ between MDE patients and HC. Serotonin and its precursor (5-hydroxytryptophan) levels were lower in MDE patients than in HC, whereas, its metabolite (5-hydroxyindoleacetic acid) levels were within the standard range. Kynurenine and four of its metabolites (kynurenic acid, nicotinamide, picolinic acid, and xanthurenic acid) were lower in MDE patients.Conclusion: Whilst the results of this study demonstrate an association between the metabolites studied and depression, conclusions about causality cannot be made. This study uses the largest ever sample of MDE patients, with an extensive assessment of peripheral tryptophan metabolism in plasma. These findings provide new insights into the peripheral signature of MDE. The reasons for these changes should be further investigated. These results might suggest new antidepressant therapeutic strategies
    corecore