20 research outputs found
Nano-imprinted subwavelength gratings as polarizing beamsplitters
Polarizing beamsplitters have numerous applications in optical systems, such as systems for freeform surface metrology. They are classically manufactured from birefringent materials or with stacks of dielectric coatings. We present a binary subwavelength-structured form-birefringent diffraction grating, which acts as a polarizing beamsplitter for a wide range of incidence angles -30°âŠ+30°. We refine the general design method for such hybrid gratings. We furthermore demonstrate the manufacturing steps with Soft-UV-Nanoimprint-Lithography, as well as the experimental verification, that the structure reliably acts as a polarizing beamsplitter. The experimental results show a contrast in efficiency for TE- and TM-polarization of up to 1:18 in the first order, and 34:1 in the zeroth order. The grating potentially enables us to realize integrated compact optical measurement systems, such as common-path interferometers
Fabrication par masque de phase de réseaux de diffraction d'aire et de période ultimes
This PhD thesis presents a bench capable to write highly coherent diffraction gratings on a large area (potentially one square meter) with periods varying from 100 nm to several micrometers. The strategy is based on the "write on the ïŹy" method, which allows writing long and stitchingless gratings by scanning a photoresist-coated substrate under a small area interferogram generated by a phase mask. The main object of this thesis concerns the design of the phase-mask. Two different types have been developed. The first type can be described as a monolithic Mach-Zehnder interferometer comprising three diffraction gratings at the same side of a thick fused silica substrate. This approach has the advantage of writing large periods without any upper limitation. Standard lithography techniques (e-beam, RIE) have been used to fabricate the mask during a two months stay at UEF at Joensuu. At the wavelength of 442 nm, a large 2 ”m period grating has been made with exposure by a divergent beam. The second type of mask is binary and made in a layer of high refractive index material. It has been used at the 244 nm wavelength and under immersion to write a 100 nm period grating. The modeling was performed to find the optimal structure capable of suppressing the zeroth transmitted order. The masks were made by three European partners within the Network of Excellence NEMO. The etching of LuAG has also been studied in view of making a 193 nm phase-mask. To write large and homogeneous gratings, various methods of beam expansion were compared to generate a light line with a homogeneous intensity proïŹle (top-hat). Solutions for the fabrication of long phase-masks have also been demonstratedCette thĂšse prĂ©sente un banc d'Ă©criture de rĂ©seaux de diffraction de grande surface dont la pĂ©riode peut varier de 100 nm Ă plusieurs micromĂštres. Le principe est basĂ© sur l'Ă©criture au vol qui permet d'Ă©crire des longs rĂ©seaux en balayant continĂ»ment un substrat recouvert de rĂ©sine photosensible sous un interfĂ©rogramme de petite dimension crĂ©Ă© par un masque de phase. Deux types de masques ont Ă©tĂ© fabriquĂ©s. Le premier, pouvant ĂȘtre dĂ©crit comme un interfĂ©romĂštre de type Mach-Zehnder monolithique, prĂ©sente l'intĂ©rĂȘt d'Ă©crire des rĂ©seaux de grandes pĂ©riodes sans limite supĂ©rieure. Il est composĂ© de trois rĂ©seaux de diffraction, Ă©crits sur la mĂȘme face d'un substrat Ă©pais grĂące Ă destechniques standards de lithographie (e-beam, gravure RIE) accessibles lors d'un Ă©change Ă l'UEF Ă Joensuu. A la longueur d'onde 442 nm, ce masque a permis d'Ă©crire un rĂ©seau de pĂ©riode de 2 ”mde grande dimension Ă l'aide d'une nappe de lumiĂšre divergente. Le second type de masque est monolithique en matĂ©riau haut indice. Il est utilisĂ© en immersion Ă la longueur d'onde de 244 nm; des rĂ©seaux de pĂ©riode de 100 nm ont Ă©tĂ© Ă©crits. La structure capable de supprimer l'ordre zĂ©ro transmis a Ă©tĂ© modĂ©lisĂ©e et les masques ont Ă©tĂ© fabriquĂ©s par trois partenaires europĂ©ens du rĂ©seau d'excellence NEMO. La gravure du LuAG a Ă©galement Ă©tĂ© Ă©tudiĂ©e en vue de fabriquer un masque de phase pour la longueur d'onde 193 nm. Afin d'Ă©crire des rĂ©seaux larges et homogĂšnes, une Ă©tude des diffĂ©rentes techniques d'Ă©largissement de faisceau a Ă©tĂ© rĂ©alisĂ©e en vue de disposer d'une ligne de lumiĂšre avec un profil d'intensitĂ© homogĂšne dit " top-hat ", et une mĂ©thode de fabrication d'un long masque de phase a Ă©tĂ© dĂ©veloppĂ©
Phase mask diffraction grating printing of extreme area and period
Cette thĂšse prĂ©sente un banc dâĂ©criture de rĂ©seaux de diffraction de grande surface dont la pĂ©riode peut varier de 100 nm Ă plusieurs micromĂštres. Le principe est basĂ© sur lâĂ©criture au vol qui permet dâĂ©crire des longs rĂ©seaux en balayant continĂ»ment un substrat recouvert de rĂ©sine photosensible sous un interfĂ©rogramme de petite dimension crĂ©Ă© par un masque de phase. Deux types de masques ont Ă©tĂ© fabriquĂ©s. Le premier, pouvant ĂȘtre dĂ©crit comme un interfĂ©romĂštre de type Mach-Zehnder monolithique, prĂ©sente lâintĂ©rĂȘt dâĂ©crire des rĂ©seaux de grandes pĂ©riodes sans limite supĂ©rieure. Il est composĂ© de trois rĂ©seaux de diffraction, Ă©crits sur la mĂȘme face dâun substrat Ă©pais grĂące Ă destechniques standards de lithographie (e-beam, gravure RIE) accessibles lors dâun Ă©change Ă lâUEF Ă Joensuu. A la longueur dâonde 442 nm, ce masque a permis dâĂ©crire un rĂ©seau de pĂ©riode de 2 ”mde grande dimension Ă lâaide dâune nappe de lumiĂšre divergente. Le second type de masque est monolithique en matĂ©riau haut indice. Il est utilisĂ© en immersion Ă la longueur dâonde de 244 nm; des rĂ©seaux de pĂ©riode de 100 nm ont Ă©tĂ© Ă©crits. La structure capable de supprimer lâordre zĂ©ro transmis a Ă©tĂ© modĂ©lisĂ©e et les masques ont Ă©tĂ© fabriquĂ©s par trois partenaires europĂ©ens du rĂ©seau dâexcellence NEMO. La gravure du LuAG a Ă©galement Ă©tĂ© Ă©tudiĂ©e en vue de fabriquer un masque de phase pour la longueur dâonde 193 nm. Afin dâĂ©crire des rĂ©seaux larges et homogĂšnes, une Ă©tude des diffĂ©rentes techniques dâĂ©largissement de faisceau a Ă©tĂ© rĂ©alisĂ©e en vue de disposer dâune ligne de lumiĂšre avec un profil dâintensitĂ© homogĂšne dit « top-hat », et une mĂ©thode de fabrication dâun long masque de phase a Ă©tĂ© dĂ©veloppĂ©eThis PhD thesis presents a bench capable to write highly coherent diffraction gratings on a large area (potentially one square meter) with periods varying from 100 nm to several micrometers. The strategy is based on the âwrite on the ïŹyâ method, which allows writing long and stitchingless gratings by scanning a photoresist-coated substrate under a small area interferogram generated by a phase mask. The main object of this thesis concerns the design of the phase-mask. Two different types have been developed. The first type can be described as a monolithic Mach-Zehnder interferometer comprising three diffraction gratings at the same side of a thick fused silica substrate. This approach has the advantage of writing large periods without any upper limitation. Standard lithography techniques (e-beam, RIE) have been used to fabricate the mask during a two months stay at UEF at Joensuu. At the wavelength of 442 nm, a large 2 ”m period grating has been made with exposure by a divergent beam. The second type of mask is binary and made in a layer of high refractive index material. It has been used at the 244 nm wavelength and under immersion to write a 100 nm period grating. The modeling was performed to find the optimal structure capable of suppressing the zeroth transmitted order. The masks were made by three European partners within the Network of Excellence NEMO. The etching of LuAG has also been studied in view of making a 193 nm phase-mask. To write large and homogeneous gratings, various methods of beam expansion were compared to generate a light line with a homogeneous intensity proïŹle (top-hat). Solutions for the fabrication of long phase-masks have also been demonstrate
Fabrication par masque de phase de réseaux de diffraction d'aire et de période ultimes
Cette thĂšse prĂ©sente un banc d Ă©criture de rĂ©seaux de diffraction de grande surface dont la pĂ©riode peut varier de 100 nm Ă plusieurs micromĂštres. Le principe est basĂ© sur l Ă©criture au vol qui permet d Ă©crire des longs rĂ©seaux en balayant continĂ»ment un substrat recouvert de rĂ©sine photosensible sous un interfĂ©rogramme de petite dimension crĂ©Ă© par un masque de phase. Deux types de masques ont Ă©tĂ© fabriquĂ©s. Le premier, pouvant ĂȘtre dĂ©crit comme un interfĂ©romĂštre de type Mach-Zehnder monolithique, prĂ©sente l intĂ©rĂȘt d e crire des rĂ©seaux de grandes pĂ©riodes sans limite supĂ©rieure. Il est composĂ© de trois rĂ©seaux de diffraction, Ă©crits sur la mĂȘme face d un substrat Ă©pais grĂące Ă destechniques standards de lithographie (e-beam, gravure RIE) accessibles lors d un Ă©change Ă l UEF Ă Joensuu. A la longueur d onde 442 nm, ce masque a permis d Ă©crire un rĂ©seau de pĂ©riode de 2 mde grande dimension Ă l aide d une nappe de lumiĂšre divergente. Le second type de masque est monolithique en matĂ©riau haut indice. Il est utilisĂ© en immersion Ă la longueur d onde de 244 nm; des rĂ©seaux de pĂ©riode de 100 nm ont Ă©tĂ© Ă©crits. La structure capable de supprimer l ordre zĂ©ro transmis a Ă©tĂ© modĂ©lisĂ©e et les masques ont Ă©tĂ© fabriquĂ©s par trois partenaires europĂ©ens du rĂ©seau d excellence NEMO. La gravure du LuAG a Ă©galement Ă©tĂ© Ă©tudiĂ©e en vue de fabriquer un masque de phase pour la longueur d onde 193 nm. Afin d Ă©crire des rĂ©seaux larges et homogĂšnes, une Ă©tude des diffĂ©rentes techniques d Ă©largissement de faisceau a Ă©tĂ© rĂ©alisĂ©e en vue de disposer d une ligne de lumiĂšre avec un profil d intensitĂ© homogĂšne dit top-hat , et une mĂ©thode de fabrication d un long masque de phase a Ă©tĂ© dĂ©veloppĂ©eThis PhD thesis presents a bench capable to write highly coherent diffraction gratings on a large area (potentially one square meter) with periods varying from 100 nm to several micrometers. The strategy is based on the write on the y method, which allows writing long and stitchingless gratings by scanning a photoresist-coated substrate under a small area interferogram generated by a phase mask. The main object of this thesis concerns the design of the phase-mask. Two different types have been developed. The first type can be described as a monolithic Mach-Zehnder interferometer comprising three diffraction gratings at the same side of a thick fused silica substrate. This approach has the advantage of writing large periods without any upper limitation. Standard lithography techniques (e-beam, RIE) have been used to fabricate the mask during a two months stay at UEF at Joensuu. At the wavelength of 442 nm, a large 2 m period grating has been made with exposure by a divergent beam. The second type of mask is binary and made in a layer of high refractive index material. It has been used at the 244 nm wavelength and under immersion to write a 100 nm period grating. The modeling was performed to find the optimal structure capable of suppressing the zeroth transmitted order. The masks were made by three European partners within the Network of Excellence NEMO. The etching of LuAG has also been studied in view of making a 193 nm phase-mask. To write large and homogeneous gratings, various methods of beam expansion were compared to generate a light line with a homogeneous intensity pro le (top-hat). Solutions for the fabrication of long phase-masks have also been demonstratedST ETIENNE-Bib. Ă©lectronique (422189901) / SudocSudocFranceF
Présentation du NEMO Edukit
article de 3 Pages et posterNational audienceL'objectif du présent article est de présenter le kit éducatif développé dans le cadre du réseau d'excellence NEMO (Network of excellence on Micro Optics) du 6Úme PCRD [1]. NEMO est un projet visant à rassembler des partenaires de plusieurs pays européen dans le domaine de la micro-optique. Pour convaincre les élÚves, dÚs l'école primaire et jusqu'à la fin du secondaire, des applications et du rÎle de l'optique et la micro-optique dans la vie quotidienne ou dans la recherche, plusieurs partenaires de NEMO ont collaborés à la création de ce kit éducatif
Three-grating monolithic phase-mask for the single-order writing of large-period gratings
International audienceA new type of high-efficiency monolithic phase mask comprising three diffraction gratings creates a purely single spatial frequency interferogram of large period that can be used to print large gratings. The fabrication of a long, 2 m-period grating according to the write-on-the-fly scheme is given as an example
Monolithic dual-grating phase mask for long grating writing
International audienceA new type of achromatic phase mask is presented which creates an interferogram of single spatial frequency regardless of the ratio between the interferogram period and the exposure wavelength. The functional demonstration of this monolithic phase mask was made in the case of a long grating of period as large as 2 ”m by mean of an exposure beam at 442 nm wavelength, i.e., more than four times smaller. The monolithic element performs one first splitting function exerted by a central transmission grating of period 1 which diffracts the incoming beam in two diffracted beams in the substrate which are then reflected to the backside of the substrate. The element performs a second diffractive function by means of two identical side-grating of period 2 placed at either side of the first grating. This function is the redirection of the two said beams under the monolith substrate at an angle which creates an interferogram of the desired perio
Monolithic double-grating phase mask for high-spatial-coherence large-period grating printing
International audienceA monolithic double-grating phase mask comprising three short-pitch grating sections of spatial frequencies k1 and k2 collocated at one side of a substrate produces a large-period interferogram without higher harmonics to print in a photoresist film a latent grating of small spatial frequency equal to twice k2âk1. When incorporated in a write-on-the-fly scheme, the elements permit the fabrication of unlimitedly long gratings