173 research outputs found
Shift in recreational fishing catches as a function of an extreme cold event
There is an increasing recognition that the influence of extreme climate events (ECE) can be more significant in structuring ecosystem dynamics than the gradual effects of climate change. Still, our understanding of the effects of climate extremes on ecosystem services such as marine fisheries lags behind those of effects of gradual change. The significance of ECEs depends on the severity of the disturbance event and the resilience of a fish community. South Florida experienced an extreme cold spell in 2010 that provided the opportunity to study recreational fisheries resilience to ECEs. Our main goal was to examine how recreational fishing catch structures responded to the cold spell, and illustrate any spatial-specific recovery trajectory dynamics after extreme ecological responses. To address this, we implemented multivariate and nonlinear statistics on fishing guide reports for 20 recreational species. A significant shift in the catch structure occurred after the event, suggesting a high sensitivity of fish populations and fisheries in the region to ECEs. All fishing regions considered were affected, but the trajectory of the response and recovery varied across study areas. While some fish species experienced an expected decline (due to mortality), other species manifested an increase in catch. Of the main seven species considered in nonlinear models, three experienced a decline (bonefish, snook, goliath grouper), two experienced an increase (red drum, gray snapper), and the two had various weak trends (tarpon, spotted seatrout). Three years after the event, the catch structure has not returned to the original state, indicating a possible state shift, whose stability needs to be determined in future tracking of affected populations. Future work should also address the extent to which harvest may interfere with resilience to ECEs. Our work highlights the need to account for rare environmental forcing induced by ECEs to ensure the ecological and economical sustainability of key services such as recreational fisheries
Resilience of a tropical sport fish population to a severe cold event varies across five estuaries in southern Florida
For species that are closely managed, understanding population resilience to environmental and anthropogenic disturbances (i.e., recovery trajectories across broad spatial areas) can guide which suite of management actions are available to mitigate any impacts. During January 2010, an extreme cold event in south Florida caused widespread mortality of common snook, Centropomus undecimalis, a popular sport fish. Interpretation of trends using fishery-independent monitoring data in five south Florida estuaries showed that changes in catch rates of adult snook (\u3e500 mm standard length) varied between no effects postevent to large effects and 4-yr recoveries. The reasons for the variation across estuaries are unknown, but are likely related to differences in estuary geomorphology and habitat availability (e.g., extent of deep rivers and canals) and differences in the proportions of behavior contingents (i.e., segments of the population that use divergent movement tactics) that place snook in different areas of the estuary during winter. Emerging awareness of the presence of behavior contingents, identification of overwintering sites, and improvements of abundance indices in remote nursery habitats should provide a better understanding of population resilience to disturbance events for snook. Given that changes in the frequency of short-lived, severe cold events are currently unknown, the findings and management actions described here for a tropical species living at the edge of its distribution should be useful to scientists forecasting the effects of climate change
Time lags: insights from the U.S. Long Term Ecological Research Network
Ecosystems across the United States are changing in complex ways that are difficult to predict. Coordinated long-term research and analysis are required to assess how these changes will affect a diverse array of ecosystem services. This paper is part of a series that is a product of a synthesis effort of the U.S. National Science Foundationâs Long Term Ecological Research (LTER) network. This effort revealed that each LTER site had at least one compelling scientific case study about âwhat their site would look likeâ in 50 or 100 yr. As the site results were prepared, themes emerged, and the case studies were grouped into separate papers along five themes: state change, connectivity, resilience, time lags, and cascading effects and compiled into this special issue. This paper addresses the time lags theme with five examples from diverse biomes including tundra (Arctic), coastal upwelling (California Current Ecosystem), montane forests (Coweeta), and Everglades freshwater and coastal wetlands (Florida Coastal Everglades) LTER sites. Its objective is to demonstrate the importance of different types of time lags, in different kinds of ecosystems, as drivers of ecosystem structure and function and how these can effectively be addressed with long-term studies. The concept that slow, interactive, compounded changes can have dramatic effects on ecosystem structure, function, services, and future scenarios is apparent in many systems, but they are difficult to quantify and predict. The case studies presented here illustrate the expanding scope of thinking about time lags within the LTER network and beyond. Specifically, they examine what variables are best indicators of lagged changes in arctic tundra, how progressive ocean warming can have profound effects on zooplankton and phytoplankton in waters off the California coast, how a series of species changes over many decades can affect Eastern deciduous forests, and how infrequent, extreme cold spells and storms can have enduring effects on fish populations and wetland vegetation along the Southeast coast and the Gulf of Mexico. The case studies highlight the need for a diverse set of LTER (and other research networks) sites to sort out the multiple components of time lag effects in ecosystems
New data on the morphology of Sphenothallus Hall: implications for its affinities
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73676/1/j.1502-3931.1992.tb01378.x.pd
Whole-genome resequencing of two elite sires for the detection of haplotypes under selection in dairy cattle
Using a combination of whole-genome resequencing and high-density genotyping arrays, genome-wide haplotypes were reconstructed for two of the most important bulls in the history of the dairy cattle industry, Pawnee Farm Arlinda Chief (âChiefâ) and his son Walkway Chief Mark (âMarkâ), each accounting for âŒ7% of all current genomes. We aligned 20.5 Gbp (âŒ7.3Ă coverage) and 37.9 Gbp (âŒ13.5Ă coverage) of the Chief and Mark genomic sequences, respectively. More than 1.3 million high-quality SNPs were detected in Chief and Mark sequences. The genome-wide haplotypes inherited by Mark from Chief were reconstructed using âŒ1 million informative SNPs. Comparison of a set of 15,826 SNPs that overlapped in the sequence-based and BovineSNP50 SNPs showed the accuracy of the sequence-based haplotype reconstruction to be as high as 97%. By using the BovineSNP50 genotypes, the frequencies of Chief alleles on his two haplotypes then were determined in 1,149 of his descendants, and the distribution was compared with the frequencies that would be expected assuming no selection. We identified 49 chromosomal segments in which Chief alleles showed strong evidence of selection. Candidate polymorphisms for traits that have been under selection in the dairy cattle population then were identified by referencing Chiefâs DNA sequence within these selected chromosome blocks. Eleven candidate genes were identified with functions related to milk-production, fertility, and disease-resistance traits. These data demonstrate that haplotype reconstruction of an ancestral proband by whole-genome resequencing in combination with high-density SNP genotyping of descendants can be used for rapid, genome-wide identification of the ancestorâs alleles that have been subjected to artificial selection
Recommended from our members
Conserved community structure and simultaneous divergence events in the fig wasps associated with Ficus benjamina in Australia and China
Localised patterns of species diversity can be influenced by many factors, including regional species pools, biogeographic features and interspecific interactions. Despite recognition of these issues, we still know surprisingly little about how invertebrate biodiversity is structured across geographic scales. In particular, there have been few studies of how insect communities vary geographically while using the same plant host. We compared the composition (species, genera) and functional structure (guilds) of the chalcid wasp communities associated with the widespread fig tree, Ficus benjamina, towards the northern (Hainan province, China) and southern (Queensland, Australia) edges of its natural range. Sequence data were generated for nuclear and mtDNA markers and used to delimit species, and Bayesian divergence analyses were used to test patterns of community cohesion through evolutionary time. Both communities host at least 14 fig wasp species, but no species are shared across continents. Community composition is similar at the genus level, with six genera shared although some differ in species diversity between China and Australia; a further three genera occur in only China or Australia. Community functional structure remains very similar in terms of numbers of species in each ecological guild despite community composition differing a little (genera) or a lot (species), depending on taxonomic level. Bayesian clustering analyses favour a single community divergence event across continents over multiple events for different ecological guilds. Molecular dating estimates of lineage splits between nearest inter-continental species pairs are broadly consistent with a scenario of synchronous community divergence from a shared "ancestral community". Fig wasp community structure and genus-level composition are largely conserved in a wide geographic comparison between China and Australia. Moreover, dating analyses suggest that the functional community structure has remained stable for long periods during historic range expansions. This suggests that ecological interactions between species may play a persistent role in shaping these communities, in contrast to findings in some comparable temperate systems
Kidney transplant in diabetic patients: modalities, indications and results
<p>Abstract</p> <p>Background</p> <p>Diabetes is a disease of increasing worldwide prevalence and is the main cause of chronic renal failure. Type 1 diabetic patients with chronic renal failure have the following therapy options: kidney transplant from a living donor, pancreas after kidney transplant, simultaneous pancreas-kidney transplant, or awaiting a deceased donor kidney transplant. For type 2 diabetic patients, only kidney transplant from deceased or living donors are recommended. Patient survival after kidney transplant has been improving for all age ranges in comparison to the dialysis therapy. The main causes of mortality after transplant are cardiovascular and cerebrovascular events, infections and neoplasias. Five-year patient survival for type 2 diabetic patients is lower than the non-diabetics' because they are older and have higher body mass index on the occasion of the transplant and both pre- and posttransplant cardiovascular diseases prevalences. The increased postransplant cardiovascular mortality in these patients is attributed to the presence of well-known risk factors, such as insulin resistance, higher triglycerides values, lower HDL-cholesterol values, abnormalities in fibrinolysis and coagulation and endothelial dysfunction. In type 1 diabetic patients, simultaneous pancreas-kidney transplant is associated with lower prevalence of vascular diseases, including acute myocardial infarction, stroke and amputation in comparison to isolated kidney transplant and dialysis therapy.</p> <p>Conclusion</p> <p>Type 1 and 2 diabetic patients present higher survival rates after transplant in comparison to the dialysis therapy, although the prevalence of cardiovascular events and infectious complications remain higher than in the general population.</p
A prospective phase II trial exploring the association between tumor microenvironment biomarkers and clinical activity of ipilimumab in advanced melanoma
<p>Abstract</p> <p>Background</p> <p>Ipilimumab, a fully human monoclonal antibody that blocks cytotoxic T-lymphocyte antigen-4, has demonstrated an improvement in overall survival in two phase III trials of patients with advanced melanoma. The primary objective of the current trial was to prospectively explore candidate biomarkers from the tumor microenvironment for associations with clinical response to ipilimumab.</p> <p>Methods</p> <p>In this randomized, double-blind, phase II biomarker study (ClinicalTrials.gov NCT00261365), 82 pretreated or treatment-naĂŻve patients with unresectable stage III/IV melanoma were induced with 3 or 10 mg/kg ipilimumab every 3 weeks for 4 doses; at Week 24, patients could receive maintenance doses every 12 weeks. Efficacy was evaluated per modified World Health Organization response criteria and safety was assessed continuously. Candidate biomarkers were evaluated in tumor biopsies collected pretreatment and 24 to 72 hours after the second ipilimumab dose. Polymorphisms in immune-related genes were also evaluated.</p> <p>Results</p> <p>Objective response rate, response patterns, and safety were consistent with previous trials of ipilimumab in melanoma. No associations between genetic polymorphisms and clinical activity were observed. Immunohistochemistry and histology on tumor biopsies revealed significant associations between clinical activity and high baseline expression of FoxP3 (p = 0.014) and indoleamine 2,3-dioxygenase (p = 0.012), and between clinical activity and increase in tumor-infiltrating lymphocytes (TILs) between baseline and 3 weeks after start of treatment (p = 0.005). Microarray analysis of mRNA from tumor samples taken pretreatment and post-treatment demonstrated significant increases in expression of several immune-related genes, and decreases in expression of genes implicated in cancer and melanoma.</p> <p>Conclusions</p> <p>Baseline expression of immune-related tumor biomarkers and a post-treatment increase in TILs may be positively associated with ipilimumab clinical activity. The observed pharmacodynamic changes in gene expression warrant further analysis to determine whether treatment-emergent changes in gene expression may be associated with clinical efficacy. Further studies are required to determine the predictive value of these and other potential biomarkers associated with clinical response to ipilimumab.</p
- âŠ