17 research outputs found
A hot mini-Neptune and a temperate, highly eccentric sub-Saturn around the bright K-dwarf TOI-2134
Funding: ACC and TGW acknowledge support from STFC consolidated grant numbers ST/R000824/1 and ST/V000861/1, and UKSA grant number ST/R003203/1. RDH is funded by the UK Science and Technology Facilities Council (STFC)’s Ernest Rutherford Fellowship (grant no. ST/V004735/1). SD is funded by the UK Science and Technology Facilities Council (grant no. ST/V004735/1). BSL is funded by a UK Science and Technology Facilities Council (STFC) studentship (ST/V506679/1). This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement SCORE no. 851555).We present the characterisation of an inner mini-Neptune in a 9.2292005±0.0000063 day orbit and an outer mono-transiting sub-Saturn planet in a 95.50+0.36-0.25 day orbit around the moderately active, bright (mv = 8.9 mag) K5V star TOI-2134. Based on our analysis of five sectors of TESS data, we determine the radii of TOI-2134b and c to be 2.69±0.16 R⊕ for the inner planet and 7.27±0.42 R⊕ for the outer one. We acquired 111 radial-velocity spectra with HARPS-N and 108 radial-velocity spectra with SOPHIE. After careful periodogram analysis, we derive masses for both planets via Gaussian Process regression: 9.13+0.78-0.76 M⊕ for TOI-2134b and 41.89+7.69-7.83 M⊕ for TOI-2134c. We analysed the photometric and radial-velocity data first separately, then jointly. The inner planet is a mini-Neptune with density consistent with either a water-world or a rocky core planet with a low-mass H/He envelope. The outer planet has a bulk density similar to Saturn’s. The outer planet is derived to have a significant eccentricity of 0.67+0.05-0.06 from a combination of photometry and RVs. We compute the irradiation of TOI-2134c as 1.45±0.10 times the bolometric flux received by Earth, positioning it for part of its orbit in the habitable zone of its system. We recommend further RV observations to fully constrain the orbit of TOI-2134c. With an expected Rossiter-McLaughlin (RM) effect amplitude of 7.2±1.3 m-1, we recommend TOI-2134c for follow-up RM analysis to study the spin-orbit architecture of the system. We calculate the Transmission Spectroscopy Metric, and both planets are suitable for bright-mode NIRCam atmospheric characterisation.Publisher PDFPeer reviewe
TOI-1634 b: An Ultra-short-period Keystone Planet Sitting inside the M-dwarf Radius Valley
Studies of close-in planets orbiting M dwarfs have suggested that the M dwarf
radius valley may be well-explained by distinct formation timescales between
enveloped terrestrials, and rocky planets that form at late times in a
gas-depleted environment. This scenario is at odds with the picture that
close-in rocky planets form with a primordial gaseous envelope that is
subsequently stripped away by some thermally-driven mass loss process. These
two physical scenarios make unique predictions of the rocky/enveloped
transition's dependence on orbital separation such that studying the
compositions of planets within the M dwarf radius valley may be able to
establish the dominant physics. Here, we present the discovery of one such
keystone planet: the ultra-short period planet TOI-1634 b ( days,
, ) orbiting a
nearby M2 dwarf (, , ) and
whose size and orbital period sit within the M dwarf radius valley. We confirm
the TESS-discovered planet candidate using extensive ground-based follow-up
campaigns, including a set of 32 precise radial velocity measurements from
HARPS-N. We measure a planetary mass of ,
which makes TOI-1634 b inconsistent with an Earth-like composition at
and thus requires either an extended gaseous envelope, a large
volatile-rich layer, or a rocky portion that is not dominated by iron and
silicates to explain its mass and radius. The discovery that the bulk
composition of TOI-1634 b is inconsistent with that of the Earth favors the
gas-depleted formation mechanism to explain the emergence of the radius valley
around M dwarfs with
TOI-4010: A System of Three Large Short-Period Planets With a Massive Long-Period Companion
We report the confirmation of three exoplanets transiting TOI-4010
(TIC-352682207), a metal-rich K dwarf observed by TESS in Sectors 24, 25, 52,
and 58. We confirm these planets with HARPS-N radial velocity observations and
measure their masses with 8 - 12% precision. TOI-4010 b is a sub-Neptune ( days, , ) in the hot Neptune desert, and is one of the
few such planets with known companions. Meanwhile, TOI-4010 c ( days,
, ) and TOI-4010 d ( days, , )
are similarly-sized sub-Saturns on short-period orbits. Radial velocity
observations also reveal a super-Jupiter-mass companion called TOI-4010 e in a
long-period, eccentric orbit ( days and based on
available observations). TOI-4010 is one of the few systems with multiple
short-period sub-Saturns to be discovered so far.Comment: 26 pages, 16 figures, published in A
Identification of the top TESS objects of interest for atmospheric characterization of transiting exoplanets with JWST
Funding: Funding for the TESS mission is provided by NASA's Science Mission Directorate. This work makes use of observations from the LCOGT network. Part of the LCOGT telescope time was granted by NOIRLab through the Mid-Scale Innovations Program (MSIP). MSIP is funded by NSF. This paper is based on observations made with the MuSCAT3 instrument, developed by the Astrobiology Center and under financial support by JSPS KAKENHI (grant No. JP18H05439) and JST PRESTO (grant No. JPMJPR1775), at Faulkes Telescope North on Maui, HI, operated by the Las Cumbres Observatory. This paper makes use of data from the MEarth Project, which is a collaboration between Harvard University and the Smithsonian Astrophysical Observatory. The MEarth Project acknowledges funding from the David and Lucile Packard Fellowship for Science and Engineering, the National Science Foundation under grant Nos. AST-0807690, AST-1109468, AST-1616624 and AST-1004488 (Alan T. Waterman Award), the National Aeronautics and Space Administration under grant No. 80NSSC18K0476 issued through the XRP Program, and the John Templeton Foundation. C.M. would like to gratefully acknowledge the entire Dragonfly Telephoto Array team, and Bob Abraham in particular, for allowing their telescope bright time to be put to use observing exoplanets. B.J.H. acknowledges support from the Future Investigators in NASA Earth and Space Science and Technology (FINESST) program (grant No. 80NSSC20K1551) and support by NASA under grant No. 80GSFC21M0002. K.A.C. and C.N.W. acknowledge support from the TESS mission via subaward s3449 from MIT. D.R.C. and C.A.C. acknowledge support from NASA through the XRP grant No. 18-2XRP18_2-0007. C.A.C. acknowledges that this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). S.Z. and A.B. acknowledge support from the Israel Ministry of Science and Technology (grant No. 3-18143). The research leading to these results has received funding from the ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation. TRAPPIST is funded by the Belgian Fund for Scientific Research (Fond National de la Recherche Scientifique, FNRS) under the grant No. PDR T.0120.21. The postdoctoral fellowship of K.B. is funded by F.R.S.-FNRS grant No. T.0109.20 and by the Francqui Foundation. H.P.O.'s contribution has been carried out within the framework of the NCCR PlanetS supported by the Swiss National Science Foundation under grant Nos. 51NF40_182901 and 51NF40_205606. F.J.P. acknowledges financial support from the grant No. CEX2021-001131-S funded by MCIN/AEI/ 10.13039/501100011033. A.J. acknowledges support from ANID—Millennium Science Initiative—ICN12_009 and from FONDECYT project 1210718. Z.L.D. acknowledges the MIT Presidential Fellowship and that this material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant No. 1745302. P.R. acknowledges support from the National Science Foundation grant No. 1952545. This work is partly supported by JSPS KAKENHI grant Nos. JP17H04574, JP18H05439, JP21K20376; JST CREST grant No. JPMJCR1761; and Astrobiology Center SATELLITE Research project AB022006. This publication benefits from the support of the French Community of Belgium in the context of the FRIA Doctoral Grant awarded to M.T. D.D. acknowledges support from TESS Guest Investigator Program grant Nos. 80NSSC22K1353, 80NSSC22K0185, and 80NSSC23K0769. A.B. acknowledges the support of M.V. Lomonosov Moscow State University Program of Development. T.D. was supported in part by the McDonnell Center for the Space Sciences. V.K. acknowledges support from the youth scientific laboratory project, topic FEUZ-2020-0038.JWST has ushered in an era of unprecedented ability to characterize exoplanetary atmospheres. While there are over 5000 confirmed planets, more than 4000 Transiting Exoplanet Survey Satellite (TESS) planet candidates are still unconfirmed and many of the best planets for atmospheric characterization may remain to be identified. We present a sample of TESS planets and planet candidates that we identify as “best-in-class” for transmission and emission spectroscopy with JWST. These targets are sorted into bins across equilibrium temperature Teq and planetary radius Rp and are ranked by a transmission and an emission spectroscopy metric (TSM and ESM, respectively) within each bin. We perform cuts for expected signal size and stellar brightness to remove suboptimal targets for JWST. Of the 194 targets in the resulting sample, 103 are unconfirmed TESS planet candidates, also known as TESS Objects of Interest (TOIs). We perform vetting and statistical validation analyses on these 103 targets to determine which are likely planets and which are likely false positives, incorporating ground-based follow-up from the TESS Follow-up Observation Program to aid the vetting and validation process. We statistically validate 18 TOIs, marginally validate 31 TOIs to varying levels of confidence, deem 29 TOIs likely false positives, and leave the dispositions for four TOIs as inconclusive. Twenty-one of the 103 TOIs were confirmed independently over the course of our analysis. We intend for this work to serve as a community resource and motivate formal confirmation and mass measurements of each validated planet. We encourage more detailed analysis of individual targets by the community.Peer reviewe
Recommended from our members
TOI-1634 b: An Ultra-short-period Keystone Planet Sitting inside the M-dwarf Radius Valley
Studies of close-in planets orbiting M dwarfs have suggested that the M dwarf
radius valley may be well-explained by distinct formation timescales between
enveloped terrestrials, and rocky planets that form at late times in a
gas-depleted environment. This scenario is at odds with the picture that
close-in rocky planets form with a primordial gaseous envelope that is
subsequently stripped away by some thermally-driven mass loss process. These
two physical scenarios make unique predictions of the rocky/enveloped
transition's dependence on orbital separation such that studying the
compositions of planets within the M dwarf radius valley may be able to
establish the dominant physics. Here, we present the discovery of one such
keystone planet: the ultra-short period planet TOI-1634 b ( days,
, ) orbiting a
nearby M2 dwarf (, , ) and
whose size and orbital period sit within the M dwarf radius valley. We confirm
the TESS-discovered planet candidate using extensive ground-based follow-up
campaigns, including a set of 32 precise radial velocity measurements from
HARPS-N. We measure a planetary mass of ,
which makes TOI-1634 b inconsistent with an Earth-like composition at
and thus requires either an extended gaseous envelope, a large
volatile-rich layer, or a rocky portion that is not dominated by iron and
silicates to explain its mass and radius. The discovery that the bulk
composition of TOI-1634 b is inconsistent with that of the Earth favors the
gas-depleted formation mechanism to explain the emergence of the radius valley
around M dwarfs with
Massive Search for Spot- A nd Facula-Crossing Events in 1598 Exoplanetary Transit Light Curves
We developed a dedicated statistical test for a massive detection of spot- A nd facula-crossing anomalies in multiple exoplanetary transit light curves, based on the frequentist p-value thresholding. This test was used to augment our algorithmic pipeline for transit light curves analysis. It was applied to 1598 amateur and professional transit observations of 26 targets being monitored in the EXPANSION project. We detected 109 statistically significant candidate events revealing a roughly 2 : 1 asymmetry in favor of spots-crossings over faculae-crossings. Although some candidate anomalies likely appear non-physical and originate from systematic errors, such asymmetry between negative and positive events should indicate a physical difference between the frequency of star spots and faculae. Detected spot-crossing events also reveal positive correlation between their amplitude and width, possibly due to spot size correlation. However, the frequency of all detectable crossing events appears just about a few per cent, so they cannot explain excessive transit timing noise observed for several targets
Recommended from our members
Massive Search for Spot- and Facula-Crossing Events in 1598 Exoplanetary Transit Light Curves
We developed a dedicated statistical test for a massive detection of spot- and facula-crossing anomalies in multiple exoplanetary transit light curves, based on the frequentist p-value thresholding. This test was used to augment our algorithmic pipeline for transit light curves analysis. It was applied to 1598 amateur and professional transit observations of 26 targets being monitored in the EXPANSION project. We detected 109 statistically significant candidate events revealing a roughly 2:1 asymmetry in favor of spots-crossings over faculae-crossings. Although some candidate anomalies likely appear non-physical and originate from systematic errors, such asymmetry between negative and positive events should indicate a physical difference between the frequency of star spots and faculae. Detected spot-crossing events also reveal positive correlation between their amplitude and width, possibly due to spot size correlation. However, the frequency of all detectable crossing events appears just about a few per cent, so they cannot explain excessive transit timing noise observed for several targets
Recommended from our members
TOI-4010: A System of Three Large Short-period Planets with a Massive Long-period Companion
Funder: NASAAbstract
We report the confirmation of three exoplanets transiting TOI-4010 (TIC-352682207), a metal-rich K dwarf observed by the Transiting Exoplanet Survey Satellite in Sectors 24, 25, 52, and 58. We confirm these planets with the High Accuracy Radial velocity Planet Searcher for the Northern Hemisphere radial velocity observations and measure their masses with 8−12% precision. TOI-4010 b is a sub-Neptune (P = 1.3 days,
R
p
=
3.02
−
0.08
+
0.08
R
⊕
,
M
p
=
11.00
−
1.27
+
1.29
M
⊕
) in the hot-Neptune desert, and is one of the few such planets with known companions. Meanwhile, TOI-4010 c (P = 5.4 days,
R
p
=
5.93
−
0.12
+
0.11
R
⊕
,
M
p
=
20.31
−
2.11
+
2.13
M
⊕
) and TOI-4010 d (P = 14.7 days,
R
p
=
6.18
−
0.14
+
0.15
R
⊕
,
M
p
=
38.15
−
3.22
+
3.27
M
⊕
) are similarly sized sub-Saturns on short-period orbits. Radial velocity observations also reveal a super-Jupiter-mass companion called TOI-4010 e in a long-period, eccentric orbit (P ∼ 762 days and e ∼ 0.26 based on available observations). TOI-4010 is one of the few systems with multiple short-period sub-Saturns to be discovered so far.</jats:p