536 research outputs found

    Classification of phase transitions in small systems

    Get PDF
    We present a classification scheme for phase transitions in finite systems like atomic and molecular clusters based on the Lee-Yang zeros in the complex temperature plane. In the limit of infinite particle numbers the scheme reduces to the Ehrenfest definition of phase transitions and gives the right critical indices. We apply this classification scheme to Bose-Einstein condensates in a harmonic trap as an example of a higher order phase transitions in a finite system and to small Ar clusters.Comment: 12 pages, 4 figures, accepted for publication in Phys. Rev. Let

    Deceptive signals of phase transitions in small magnetic clusters

    Full text link
    We present an analysis of the thermodynamic properties of small transition metal clusters and show how the commonly used indicators of phase transitions like peaks in the specific heat or magnetic susceptibility can lead to deceptive interpretations of the underlying physics. The analysis of the distribution of zeros of the canonical partition function in the whole complex temperature plane reveals the nature of the transition. We show that signals in the magnetic susceptibility at positive temperatures have their origin at zeros lying at negative temperatures.Comment: 4 pages, 5 figures, revtex4, for further information see http://www.smallsystems.d

    Classification of phase transitions of finite Bose-Einstein condensates in power law traps by Fisher zeros

    Get PDF
    We present a detailed description of a classification scheme for phase transitions in finite systems based on the distribution of Fisher zeros of the canonical partition function in the complex temperature plane. We apply this scheme to finite Bose-systems in power law traps within a semi-analytic approach with a continuous one-particle density of states Ω(E)Ed1\Omega(E)\sim E^{d-1} for different values of dd and to a three dimensional harmonically confined ideal Bose-gas with discrete energy levels. Our results indicate that the order of the Bose-Einstein condensation phase transition sensitively depends on the confining potential.Comment: 7 pages, 9 eps-figures, For recent information on physics of small systems see "http://www.smallsystems.de

    Aerosols in the tropical and subtropical UT/LS: in-situ measurements of submicron particle abundance and volatility

    Get PDF
    Processes occurring in the tropical upper troposphere and lower stratosphere (UT/LS) are of importance for the global climate, for the stratospheric dynamics and air chemistry, and they influence the global distribution of water vapour, trace gases and aerosols. The mechanisms underlying cloud formation and variability in the UT/LS are of scientific concern as these still are not adequately described and quantified by numerical models. Part of the reasons for this is the scarcity of detailed in-situ measurements in particular from the Tropical Transition Layer (TTL) within the UT/LS. In this contribution we provide measurements of particle number densities and the amounts of non-volatile particles in the submicron size range present in the UT/LS over Southern Brazil, West Africa, and Northern Australia. The data were collected in-situ on board of the Russian high altitude research aircraft M-55 "Geophysica" using the specialised COPAS (COndensation PArticle counting System) instrument during the TROCCINOX (Araçatuba, Brazil, February 2005), the SCOUT-O3 (Darwin, Australia, December 2005), and SCOUT-AMMA (Ouagadougou, Burkina Faso, August 2006) campaigns. The vertical profiles obtained are compared to those from previous measurements from the NASA DC-8 and NASA WB-57F over Costa Rica and other tropical locations between 1999 and 2007. The number density of the submicron particles as function of altitude was found to be remarkably constant (even back to 1987) over the tropical UT/LS altitude band such that a parameterisation suitable for models can be extracted from the measurements. At altitudes corresponding to potential temperatures above 430 K a slight increase of the number densities from 2005/2006 results from the data in comparison to the 1987 to 2007 measurements. The origins of this increase are unknown. By contrast the data from Northern hemispheric mid latitudes do not exhibit such an increase between 1999 and 2006. Vertical profiles of the non-volatile fraction of the submicron particles were also measured by a COPAS channel and are presented here. The resulting profiles of the non-volatile number density fraction show a pronounced maximum of 50% in the tropical TTL over Australia and West Africa. Below and above this fraction is much lower attaining values of 10% and smaller. In the lower stratosphere the fine particles mostly consist of sulphuric acid which is reflected in the low numbers of non-volatile residues measured by COPAS. Without detailed chemical composition measurements the reason for the increase of non-volatile particle fractions cannot yet be given. The long distance transfer flights to Brazil, Australia and West-Africa were executed during a time window of 17 months within a period of relative volcanic quiescence. Thus the data measured during these transfers represent a "snapshot picture" documenting the status of a significant part of the global UT/LS aerosol (with sizes below 1 μm) at low concentration levels 15 years after the last major (i.e., the 1991 Mount Pinatubo) eruption. The corresponding latitudinal distributions of the measured particle number densities are also presented in this paper in order to provide input on the UT/LS background aerosol for modelling purposes

    Extremely high magnetoresistance and conductivity in the type-II Weyl semimetals WP2 and MoP2

    Full text link
    The peculiar band structure of semimetals exhibiting Dirac and Weyl crossings can lead to spectacular electronic properties such as large mobilities accompanied by extremely high magnetoresistance. In particular, two closely neighbouring Weyl points of the same chirality are protected from annihilation by structural distortions or defects, thereby significantly reducing the scattering probability between them. Here we present the electronic properties of the transition metal diphosphides, WP2 and MoP2, that are type-II Weyl semimetals with robust Weyl points. We present transport and angle resolved photoemission spectroscopy measurements, and first principles calculations. Our single crystals of WP2 display an extremely low residual low-temperature resistivity of 3 nohm-cm accompanied by an enormous and highly anisotropic magnetoresistance above 200 million % at 63 T and 2.5 K. These properties are likely a consequence of the novel Weyl fermions expressed in this compound. We observe a large suppression of charge carrier backscattering in WP2 from transport measurements.Comment: Appeared in Nature Communication

    The interplay between shell effects and electron correlations in quantum dots

    Get PDF
    We use the Path Integral Monte Carlo method to investigate the interplay between shell effects and electron correlations in single quantum dots with up to 12 electrons. By use of an energy estimator based on the hypervirial theorem of Hirschfelder we study the energy contributions of different interaction terms in detail. We discuss under which conditions the total spin of the electrons is given by Hund's rule, and the temperature dependence of the crystallization effects.Comment: 6 pages, 4 figure

    Effects of Artesunate on Parasite Recrudescence and Dormancy in the Rodent Malaria Model Plasmodium vinckei

    Get PDF
    Artemisinin (ART) is the recommended first line therapy for treating uncomplicated and drug-resistant Plasmodium falciparum, the most pathogenic form of malaria. However, treatment failure following ART monotherapy is not uncommon and resistance to this rapidly acting drug has been reported in the Thai-Cambodian border. Recent in vitro studies have shown that following treatment with dihydroartemisinin (DHA), the development of ring-stage parasites is arrested for up to 20 days. These arrested (i.e. dormant) rings could be responsible for the recrudescence of infection that is observed following ART monotherapy. To develop a better understanding of the stage-specific effects of ART and determine if dormancy occurs in vivo, the ART derivative artesunate (AS) was used to treat mice infected with the synchronous rodent malaria parasites P. vinckei petteri (non-lethal) and P. v. vinckei (lethal). Results show that in both the non-lethal and lethal strains, ring-stage parasites are the least susceptible to treatment with AS and that the day of treatment has more of an impact on recrudescence than the total dose administered. Additionally, 24 hrs post-treatment with AS, dormant forms similar in morphology to those seen in vitro were observed. Finally, rate of recrudescence studies suggest that there is a positive correlation between the number of dormant parasites present and when recrudescence occurs in the vertebrate host. Collectively, these data suggest that dormancy occurs in vivo and contributes to recrudescence that is observed following AS treatment. It is possible that this may represent a novel mechanism of parasite survival following treatment with AS

    Strong coupling between magnetic and structural order parameters in SrFe2As2

    Get PDF
    X-ray and Neutron diffraction as well as muon spin relaxation and M\"ossbauer experiments performed on SrFe2_2As2_2 polycrystalls confirm a sharp first order transition at T0=205T_0 = 205,K corresponding to an orthorhombic phase distortion and to a columnar antiferromagnetic Fe ordering with a propagation vector (1,0,1), and a larger distortion and larger size of the ordered moment than reported for BaFe2_2As2_2. The structural and the magnetic order parameters present an remarkable similarity in their temperature dependence from T0T_0 down to low temperatures, showing that both phenomena are intimately connected. Accordingly, the size of the ordered Fe moments scale with the lattice distortion when going from SrFe2_2As2_2 to BaFe2_2As2_2. Full-potential band structure calculations confirm that the columnar magnetic order and the orthorhombic lattice distortion are intrinsically tied to each other.Comment: 10 pages, 4 figure

    Anisotropic electrical and thermal magnetotransport in the magnetic semimetal GdPtBi

    Full text link
    The half-Heusler rare-earth intermetallic GdPtBi has recently gained attention due to peculiar magnetotransport phenomena that have been associated with the possible existence of Weyl fermions, thought to arise from the crossings of spin-split conduction and valence bands. On the other hand, similar magnetotransport phenomena observed in other rare-earth intermetallics have often been attributed to the interaction of itinerant carriers with localized magnetic moments stemming from the 4f4f-shell of the rare-earth element. In order to address the origin of the magnetotransport phenomena in GdPtBi, we performed a comprehensive study of the magnetization, electrical and thermal magnetoresistivity on two single-crystalline GdPtBi samples. In addition, we performed an analysis of the Fermi surface via Shubnikov-de Haas oscillations in one of the samples and compared the results to \emph{ab initio} band structure calculations. Our findings indicate that the electrical and thermal magnetotransport in GdPtBi cannot be solely explained by Weyl physics and is strongly influenced by the interaction of both itinerant charge carriers and phonons with localized magnetic Gd-ions and possibly also paramagnetic impurities.Comment: 11 figure

    Aerosols in the tropical and subtropical UT/LS: in-situ measurements of submicron particle abundance and volatility

    Get PDF
    Processes occurring in the tropical upper troposphere (UT), the Tropical Transition Layer (TTL), and the lower stratosphere (LS) are of importance for the global climate, for stratospheric dynamics and air chemistry, and for their influence on the global distribution of water vapour, trace gases and aerosols. In this contribution we present aerosol and trace gas (in-situ) measurements from the tropical UT/LS over Southern Brazil, Northern Australia, and West Africa. The instruments were operated on board of the Russian high altitude research aircraft M-55 "Geophysica" and the DLR Falcon-20 during the campaigns TROCCINOX (Araçatuba, Brazil, February 2005), SCOUT-O3 (Darwin, Australia, December 2005), and SCOUT-AMMA (Ouagadougou, Burkina Faso, August 2006). The data cover submicron particle number densities and volatility from the COndensation PArticle counting System (COPAS), as well as relevant trace gases like N2O, ozone, and CO. We use these trace gas measurements to place the aerosol data into a broader atmospheric context. Also a juxtaposition of the submicron particle data with previous measurements over Costa Rica and other tropical locations between 1999 and 2007 (NASA DC-8 and NASA WB-57F) is provided. The submicron particle number densities, as a function of altitude, were found to be remarkably constant in the tropical UT/LS altitude band for the two decades after 1987. Thus, a parameterisation suitable for models can be extracted from these measurements. Compared to the average levels in the period between 1987 and 2007 a slight increase of particle abundances was found for 2005/2006 at altitudes with potential temperatures, theta, above 430 K. The origins of this increase are unknown except for increases measured during SCOUT-AMMA. Here the eruption of the Soufrière Hills volcano in the Caribbean caused elevated particle mixing ratios. The vertical profiles from Northern hemispheric mid-latitudes between 1999 and 2006 also are compact enough to derive a parameterisation. The tropical profiles all show a broad maximum of particle mixing ratios (between theta ~ 340 K and 390 K) which extends from below the TTL to above the thermal tropopause. Thus these particles are a "reservoir" for vertical transport into the stratosphere. The ratio of non-volatile particle number density to total particle number density was also measured by COPAS. The vertical profiles of this ratio have a maximum of 50% above 370 K over Australia and West Africa and a pronounced minimum directly below. Without detailed chemical composition measurements a reason for the increase of non-volatile particle fractions cannot yet be given. However, half of the particles from the tropical "reservoir" contain compounds other than sulphuric acid and water. Correlations of the measured aerosol mixing ratios with N2O and ozone exhibit compact relationships for the tropical data from SCOUT-AMMA, TROCCINOX, and SCOUT-O3. Correlations with CO are more scattered probably because of the connection to different pollution source regions. We provide additional data from the long distance transfer flights to the campaign sites in Brazil, Australia, and West-Africa. These were executed during a time window of 17 months within a period of relative volcanic quiescence. Thus the data represent a "snapshot picture" documenting the status of a significant part of the global UT/LS fine aerosol at low concentration levels 15 years after the last major (i.e., the 1991 Mount Pinatubo) eruption. The corresponding latitudinal distributions of the measured particle number densities are presented in this paper to provide data of the UT/LS background aerosol for modelling purposes
    corecore