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Interplay between shell effects and electron correlations in quantum dots

Jens Harting, Oliver Mu¨lken, and Peter Borrmann
Department of Physics, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg, Germany

~Received 18 February 2000!

We use the path integral Monte Carlo method to investigate the interplay between shell effects and electron
correlations in single quantum dots with up to 12 electrons. By use of an energy estimator based on the
hypervirial theorem of Hirschfelder we study the energy contributions of different interaction terms in detail.
We discuss under which conditions the total spin of the electrons is given by Hund’s rule, and the temperature
dependence of the crystallization effects.
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I. INTRODUCTION

The advances in nanofabrication of the last years ope
the goal to build two-dimensional~2D! quantum dots~QD’s!
and quantum dot molecules~QDM’s!— artificial mesoscopic
semiconductor structures of selectable shape and size
containers for a controllable fixed number of electrons.1,2

Recently, depending on the strength and shape of the e
tive confining potential, the formation of spin density wav
~SDW’s! ~Refs. 3 and 4! and Wigner crystals3,5 in QD’s and
QDM’s has been predicted by different groups with differe
theoretical approaches. Hirose and Wingreen6 argue that
SDW’s are reproducible artifacts of spin density function
calculations. For a 2D parabolic confining potential the
cordance of the spin configuration with Hund’s rule has be
predicted by Koskinen, Manninen, and Reimann4 and ques-
tioned by Yannouleas and Landman.3 All these effects are
governed by the intriguing interplay between shell effec
the pure Coulomb repulsion, and the fermionic repulsion d
to the Pauli exclusion principle and depend strongly on
values of the interaction parameters in the commonly
sumed Hamiltonian for single QD’s

H5(
i 51

N S pi
2

2m*
1

m* v0
2

2
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2D 1 (
i , j 51

N
e2

kuxi2xj u
, ~1!

wherek is the dielectric constant,m* is the effective mass
andv0 defines the strength of the confining potential.

Apart from the interesting physical questions that arise
quantum dots the reliable prediction of their properties is
ultimate test of modern methods in quantum chemistry. D
to the compared to atoms very shallow confining potent
long range electron interactions and correlations play an
portant role in QD’s and QDM’s. Therefore it is misleadin
to name them artificial atoms and molecules. Well est
lished and very elaborate methods of quantum chemi
might fail in describing them properly. Hartree-Fock a
spin density functional methods use single Slater deter
nants or sums of them to approximate the many-body w
function. In spin-density functional methods the approxim
tion of the functional for the exchange correlation energy4,7,8

adds another source of uncertainty and systematic erro
this approach. The path integral Monte Carlo meth
~PIMC! used in this paper samples the full many-body wa
function instead.

In contrast to density functional methods~DFT! with
PIMC it is possible to study the temperature dependent p
PRB 620163-1829/2000/62~15!/10207~5!/$15.00
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erties of QD’s. The reason why PIMC is not yet a standa
method of quantum chemistry is its numerical limitation d
to the fermion sign problem. The rapidly increasing power
modern computers resizes this limitation. In Sec. II w
briefly summarize our implementation of PIMC and com
ment on how to limit the numerical deficiencies due to t
fermion sign problem.

We apply PIMC to calculate the electron density and tw
particle correlation functions for quantum dots with up to
electrons. To compare with various experimental studies
well as with other theoretical studies we use different diel
tric constantsk and strengths of the confining parabolic p
tentials. The calculated addition energies are in very go
agreement with the experimental findings of Taruchaet al.2

For N56 we investigate the temperature dependence
the Wigner crystallization~WC!.

II. NUMERICAL METHOD

For a system ofN electrons with position eigenketu xW i ,si&
(si56 1

2 for spin-up and spin-down electrons! in an external
potential the Feynman path integral can be written as9–11

Z5E F )
g51

M

)
i 51

N

dxW i~g!G )
d51

M

det@A~d,d11!#

3expS 2
b

M (
a51

M

V@xW1~a!, . . . ,xWN~a!# D 1O S b3

M2D ,

~2!

with

@A~a,a11!# i , j

5H K xW i~a! U expS 2
b

M

p2

2mD U xW j~a11!L , si5sj

0, sjÞsj

~3!

and the boundary conditionxW j (M11)5xW j (1). M is the
number of so-calledtimeslicesof the Feynman paths. In th
limit M→` Eq. ~2! becomes exact. For quantum dots t
space dimension isd52 and the (2NM)-dimensional inte-
gral given in Eq.~2! can be evaluated by standard Metropo
10 207 ©2000 The American Physical Society
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10 208 PRB 62JENS HARTING, OLIVER MÜLKEN, AND PETER BORRMANN
Monte Carlo techniques. Due to the determinant the in
grand is not always positive and the expectation value o
observableX(x) depending only on position operators has
be calculated using

^X&5

(
g51

G

Xg sgn~Wg!

(
g51

G

sgn~Wg!

, ~4!

where Xg is the value of the observableX and Wg is the
value of the integrand in Eq.~2! in thegth Monte Carlo step.
Equation ~4! reveals a severe problem connected with
path integral for fermions which is commonly denoted as
fermion sign problem~see, e.g., Refs. 12–14!. It can be
shown that the ratio between integrands with positive s
(W1) and negative sign (W2) is approximately given by14,15

W12W2

W11W2
; exp@2b~EF2EB!#, ~5!

whereEF andEB are the ground state energies of the Fer
system and the corresponding Bose system. It is now o
ous that the statistical error in Eq.~4! grows rapidly for small
temperaturesT. Moreover the energy difference (EF2EB)
will grow with increasing system size causing an increase
the statistical error.

Within PIMC the calculation of the kinetic energy expe
tation value is another critical task. This is merely due to
fact that the Monte Carlo calculation is usually done in p
sition space and that the discretization of the paths allow
number of different approaches to calculate the expecta
th
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value of a momentum dependent operator. A number of v
ous different energy estimators has been discussed in
past.16–18

To avoid these difficulties we developed a procedu
which allows the calculation of all energy expectation valu
from the knowledge of the pair correlation functions

G i , j~r !5^d~r 2u xW i2xW j u!& ~6!

and the radial density functions per electron

r i~r !5
1

2pr
^d~r 2u xW i u!&5

1

2pr
%~r !, ~7!

where% is the probability of finding electroni in distancer
from the center.

Due to the particle symmetry we have

G i , j~r !55
G↑↑~r !, si5sj51

1

2

G↓↓~r !, si5sj52
1

2

G↑↓~r !, siÞsj

~8!

and

r i~r !5H r↑~r !, si51
1

2

r↓~r !, si52
1

2
.

~9!

Utilizing the hypervirial theorem of Hirschfelder19 the en-
ergy can be written as a sum of ten parts20
E5Ekin
↑ 1Ekin

↓ 1Ekin
↑↑ 1Ekin

↓↓ 1Ekin
↑↓ 1Epot

↑ 1Epot
↓ 1Epot

↑↑ 1Epot
↓↓ 1Epot

↑↓ 5
N↑

2 E
0

`

dr %↑~r !r ] rV1~r !1
N↓

2 E
0

`

dr %↓~r !r ] rV1~r !

1
N↑~N↑21!

4 E
0

`

dr G↑↑ ~r ! r
]V2~r !

]r
1

N↓~N↓21!

4 E
0

`

dr G↓↓ ~r ! r
]V2~r !

]r
1

N↓N↑

2 E
0

`

dr G↑↓ ~r ! r
]V2~r !

]r

1
N↑

2 E
0

`

dr %↑~r !V1~r !1
N↓

2 E
0

`

dr %↓~r !V1~r !1
N↑~N↑21!

2 E dr G↑↑~r !V2~r !

1
N↓~N↓21!

2 E dr G↓↓~r !V2~r !1N↑N↓ E dr G↑↓~r !V2~r !. ~10!
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While in density functional approaches the calculation of
kinetic energy and the exchange correlation energy is a
jor topic and subject to permanent discussion, within the p
integral approach these energies are included in a na
way.

However, the systematic error arising from the limit
number of timeslicesM and the statistical error of the Mont
Carlo calculation have to be controlled carefully. W
checked our algorithm extensively using eight noninteract
fermions in a parabolic trap as a test system. We found
at low temperatures where the ratio of signs is around 0
convergence can only be achieved obeying the follow
e
a-
th
ral

g
at
9,
g

rules:~1! The determinants have to be calculated very ac
rately using a more costly algorithm with pivoting.~2! The
completely uncorrelated generation of the Monte Carlo st
is essential, i.e., the coordinate to be moved should be c
sen randomly. Moving the particle coordinates using alwa
the same sequence produces inaccurate results.~3! A good
random number generator with acompletelyuncorrelated se-
quence in all significant bits of a 64 bit real number shou
be applied. We therefore developed a 53 bit random num
of Marsaglia-Zaman type21 instead of using one of the stan
dard 24 or 32 bit random number generators coming w
standard system libraries.~4! Further, to improve the conver
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gence a number of different Monte Carlo steps can be
plied, i.e., moving single time slices, moving complete p
ticle paths and parts of a path. Our Fortran code
completely parallelized using MPI and Lapack.

III. RESULTS

To compare our PIMC calculations to experimental d
we calculated the addition energies

DE5EN1122EN1EN21 ~11!

of a QD with up to 11 electrons using the material consta
m* 50.067m andk512.9 for GaAs as given by Hirose an
Wingreen.6 It is assumed that these parameters mimic
experimental setup of Taruchaet al.2 reasonably well. The
strength of the harmonic potential is fixed at\v0

53.0 meV. The resulting effective atomic units areEH*
510.955 meV for the Hartree energy anda0*
510.1886 nm for the Bohr radius. The Boltzmann const
is kB57.866131023 EH* /K.

We performed PIMC simulations for quantum dots w
different spin configurations at a fixed temperature of 10
Due to the fermion sign problem the number of Monte Ca
steps necessary to push the statistical error of the total
ergy, which has been calculated properly from 25 unco
lated subsequences of MC steps, into the range of 0.1%
extremely high. The number of Monte Carlo steps rang
between 2.5 billion steps per particle coordinate forN<6
and about 10 billion steps forN512. Figure 1 displays the
addition energies for quantum dots with up to 11 electro
The circles indicate the results from our path integral cal
lations at 10 K, the squares are results of spin density fu
tional calculations of Hirose and Wingreen,6 and the tri-
angles are the experimental results of Taruchaet al.2 Both
theoretical calculations reproduce the generalN dependence
of the addition energies in great detail. Taruchaet al.give an
estimate of the electron temperature in their experiment
T50.2 K. For computational reasons our PIMC calculatio
are performed at 10 K and it cannot be expected that

FIG. 1. Addition energies for quantum dots with up to 11 ele
trons. The circles indicate the results from our path integral ca
lations at 10 K, the squares are results of spin density functio
calculations of Hirose and Wingreen, and the triangles are the
perimental results of Taruchaet al. The error bars for PIMC would
be of the size of the solid circles and are therefore omitted.
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absolute energy values agree as well as the 0 K DFT calcu-
lations with the experimental results. However, it should
noted that PIMC correctly predicts the drop in the additi
energy fromN57 to N58 while the DFT calculations fail a
this point.

The inset in Fig. 1 displays the total spins of the sp
configurations with lowest energy as found in DFT a
PIMC at 10 K. In DFT calculations~0 K! the spin configu-
ration of the ground state is determined by Hund’s rule
up to 22 electrons. In contrast, in our PIMC calculation at
K the total spin is not always in accordance with Hund
rule. For N54 we checked the temperature dependence
the spin configuration. At 5 K the energy of the spin 0 con
figuration is 0.01EH* higher than the spin 1 energy indicatin
a temperature dependence of the favored spin configura

As an important fact we note that theN dependence of the
addition energies is not affected by the actual spin confi
ration. The situation is quite similar to that in transition me
clusters with extreme small energy differences betwe
states with significantly different magnetic moments.22

As can be inferred from Fig. 2~a! the radial spin densities
are significantly different for both spin configurations. Th
total potential energy for the spin 1 configuration is abo
0.07 meV lower than that of the spin 0 configuration. At
K this is overcompensated by an 0.27 meV higher kine
energy~see Table I!. Although the kinetic and potential en
ergies for different total spins significantly differ, the tot
energies are almost equal. Similar situations are found
largerN.

For convenience and easy comparison we determined
value of the dimensionless density parameterr s , which is
sometimes used to characterize quantum dots~see, e.g., Ref.
5! to be r s54.19 forN54.

The energies given in Table I correspond to the integr
in Eq. ~10!. The total kinetic energy which is the sum of a
Ekin

x terms is always positive while some of the adden
might be negative. Table I reveals that larger total spins
sult in larger kinetic energies. The total potential energy
almost unchanged, the larger contribution from the trap
tential is compensated by a smaller contribution from
Coulomb repulsion. We note that the ratioEW between the
kinetic energy and the total energy is considerably larger
N54 than for N59 reflecting the looser binding of th
smaller system.

-
-

al
x-

FIG. 2. ~a! Radial density per electron and~b! pair correlation
functions for four electrons and total spinsS50 and S51. The
material constants arek512.9 and\v53.0 meV.
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TABLE I. Kinetic and potential energies as well asEW5Ekin /Etot in meV for different electron configu-
rations at 10 K~the numbers in parentheses are the single particle energies!.

N↑52, N↓52 N↑53, N↓51 N↑55, N↓54 N↑56, N↓53

Etot 40.83 41.03 169.25 169.82
Ekin 7.33 7.60 18.97 19.57
Epot 33.50 33.43 150.28 150.26
EW 0.18 0.19 0.11 0.12

Ekin
↑ 8.03~8.03! 12.66~8.44! 35.44~14.18! 43.74~14.58!

Ekin
↓ 8.03~8.03! 3.55~7.10! 27.30~13.65! 19.39~12.93!

Ekin
↑↑ 21.31 (22.62) 23.97 (22.65) 211.20 (22.24) 216.87 (22.25)

Ekin
↑↓ 26.11 (23.05) 24.64 (23.09) 225.84 (22.58) 223.31 (22.59)

Ekin
↓↓ 21.31 (22.62) 0.00~0.00! 26.72 (22.24) 23.39 (22.26)

Epot 33.50 33.43 150.28 150.26
Epot

↑ 8.03~4.01! 12.66~4.22! 35.44~7.09! 43.74~7.30!
Epot

↓ 8.03~4.01! 3.55~3.55! 27.30~6.82! 19.39~6.46!
Epot

↑↑ 2.62~2.62! 7.94~2.65! 22.40~2.24! 33.73~2.25!
Epot

↑↓ 12.21~3.05! 9.28~3.09! 51.69~2.58! 46.62~2.59!
Epot

↓↓ 2.62~2.62! 0.00~0.00! 13.44~2.24! 6.78~2.26!
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Next we consider the dependence of the Wigner crys
lization on the temperature and the choice of the mate
constants. The localization of the electrons in space is c
monly referred to as Wigner crystallization. For quantu
dots the occurrence of well separated humps in the ra
electron density and the pair correlation functions has b
interpreted as WC. However, it is a nontrivial task to find
general parameter identifying if an electron system is cr
tallized or not. From a solid state physics point of view t
electrons should have a low mobility, i.e., a small kine
energy, and should not interchange their lattice positions.
fermions the localization of single electrons does not m
any sense, and, as stated above, even the decompositi
the many-body wave function in sums of determinants
single particle wave functions is probably a too rough a
proximation for QD’s. These facts limit the analogies b
tween crystallization in solids and electron systems a
make the termcrystallizationitself somehow misleading. We
therefore view Wigner crystals as states of the many-b
wave function with a relatively low kinetic energy.

First we consider the strength of the Wigner crystalliz
tion depending on the choice of the interaction paramet
Figure 3 displays the radial densities and pair correlat
functions for six electrons withS50, \v55 meV, andk
53.0, 6.0, and 12.9. Of course, for stronger electron rep
sions~smallk) the electron distributions are broadened. T
qualitative picture of the distributions is merely the sam
For all k shell effects indicated by off-center maximums
the radial density occur. However, only fork53 and 6 we
observe a maximum atr 50. From our point of view it can-
not definitely be decided from this figure if a system
Wigner crystallized or not. As a parameter reflecting t
strength of the WC we employ the ratios between the kin
and the total energiesEW5Ekin /Etot which are 0.07, 0.10
and 0.14 fork53.0, 6.0, and 12.9. Although the radial di
tribution function for k512.9 is quite narrow, the relativ
mobility for the electrons indicated byEW is twice as large
as fork53. The underlying physical process can be und
l-
al
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or
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stood intuitively. Due to the stronger electron-electron rep
sions the electrons are fixed in an energetical favorable g
metric configuration and as a consequence thereof
relative kinetic energy is reduced and the difference betw
the pair correlation functions of equal and opposite spin
most vanishes~see Fig. 3!. It is an interesting and to ou
knowledge open question, if the crystallization of electro
can be viewed as a phase transition. We therefore cons
next the temperature dependent properties of a quantum
with N56, S50, k53, and\v55 meV. The results for
temperatures between 10 and 150 K are presented in T
II. Most notablyEW increases relatively smoothly from 0.0
at 10 K to 0.22 at 150 K. Within our numerical accuracy t
caloric curve does not show any evidence of a phase tra
tion. The transition from a crystallized state to an electr
fluid seems to be squashy. Of course, from our calculati
we cannot exclude that a phase transition exists for largeN

FIG. 3. Radial density per electron~left! and pair correlation
functions~right! for N56, S50, \v055 meV and dielectric con-
stantsk53.0, 6.0, and 12.9 at 10 K. The radial density fork
512.9 is scaled by a factor of 3 and the pair correlation functio
are scaled to have a maximum value of61.



ra
tio
ia
w
g

u
er
lik
e

de
o

nt
rm
ite

i
le
th
o

e
ub-
ds.

to
ion
of

ew
rob-

nd

r-

s-

s

a-

PRB 62 10 211INTERPLAY BETWEEN SHELL EFFECTS AND . . .
or different interaction parameters. Figure 4 displays the
dial electron densities and the total electron pair correla
function for different temperatures. Up to 60 K the rad
density shows clear geometric structure effects with t
maximums while at 150 K only a smooth curve resemblin
simple Gaussian remains.

IV. CONCLUSION

In conclusion, we have found that despite of the notorio
fermion sign problem PIMC is capable of answering int
esting questions for strongly correlated electron systems
QD’s and QDM’s. For QD’s PIMC reproduces correctly th
experimental addition energies. Our temperature depen
calculations give new insights into the process of WC. F
the two-dimensional QD’s a ratioEW5Ekin /Etot below 0.1
seems to indicate WC both fork and temperature depende
calculations. However, regarding this aspect a more fi
classification parameter, e.g., similar to the Lindemann cr
rion is desirable.

A comparision to other QMC methods seems to be
order here. Even our most complicated simulations took
than 2 h on a Cray T3E with 62 processors. Taking
advantages of modern computer power and optimized s

TABLE II. Kinetic and potential energies for different temper
tures and spin configurationN↑53, N↓53. The Hartree energy is
EH* 5202.558 meV,k53, and \v055.0 meV. EW is the ratio
between the kinetic and the total energy.

N↑53, N↓53 EW Ekin (meV) Epot (meV) Etot (meV)

T510 K 0.07 17.70 246.53 264.32
T530 K 0.08 22.93 249.53 272.46
T560 K 0.12 35.39 257.67 293.06
T590 K 0.16 49.44 267.01 316.46
T5120 K 0.19 64.10 276.84 340.93
T5150 K 0.22 78.49 286.88 365.35
v.

tt.

v.
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n
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e

nt
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ft-

ware, thebrute forcePIMC applied here is able to produc
very precise results. Different algorithms have been p
lished to improve the performance of path integral metho
A recent one is themultilevel blockingmethod published by
Mak et al.23 Simulations using this algorithm are expected
converge better than our direct treatment since the ferm
sign problem is avoided partially. The published results
the treatment of quantum dots by Eggeret al.5 do not con-
firm this expectation. Obviously the advantages of the n
method are more than compensated by other numerical p
lems, maybe due to the energy estimator used.24 Neverthe-
less, a combination of the multilevel-blocking method a
our technique might result in a very powerful tool.
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FIG. 4. Radial density~left! and pair correlation functions
~right! for N56, S50, \v055 meV, k53.0, and temperature
T510, 30, 60, and 150 K.
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