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Interplay between shell effects and electron correlations in quantum dots

Jens Harting, Oliver Miken, and Peter Borrmann
Department of Physics, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg, Germany
(Received 18 February 2000

We use the path integral Monte Carlo method to investigate the interplay between shell effects and electron
correlations in single quantum dots with up to 12 electrons. By use of an energy estimator based on the
hypervirial theorem of Hirschfelder we study the energy contributions of different interaction terms in detail.
We discuss under which conditions the total spin of the electrons is given by Hund'’s rule, and the temperature
dependence of the crystallization effects.

[. INTRODUCTION erties of QD’s. The reason why PIMC is not yet a standard
method of quantum chemistry is its numerical limitation due
The advances in nanofabrication of the last years openet the fermion sign problem. The rapidly increasing power of
the goal to build two-dimension&2D) quantum dot$QD’s) modern computers resizes this limitation. In Sec. Il we
and quantum dot moleculé®DM's)— artificial mesoscopic  briefly summarize our implementation of PIMC and com-
semiconductor structures of selectable shape and size—agent on how to limit the numerical deficiencies due to the
containersfor a controllable fixed number of electroh$. fermion sign problem.
Recently, depending on the strength and shape of the effec- We apply PIMC to calculate the electron density and two-
tive confining potential, the formation of spin density wavespatrticle correlation functions for quantum dots with up to 12
(SDW'’s) (Refs. 3 and #and Wigner crystaFSS in QD’s and  electrons. To compare with various experimental studies as
QDM’s has been predicted by different groups with differentwell as with other theoretical studies we use different dielec-
theoretical approaches. Hirose and Wingfeangue that tric constantsc and strengths of the confining parabolic po-
SDW's are reproducible artifacts of spin density functionaltentials. The calculated addition energies are in very good
calculations. For a 2D parabolic confining potential the ac-agreement with the experimental findings of Taruehal?
cordance of the spin configuration with Hund’s rule has been For N=6 we investigate the temperature dependence of
predicted by Koskinen, Manninen, and Reimhand ques- the Wigner crystallizatiofWC).
tioned by Yannouleas and Landmanll these effects are
governed by the intriguing interplay between shell effects,
the pure Coulomb repulsion, and the fermionic repulsion due
to the Pauli exclusion principle and depend strongly on the

values of the interaction parameters in the commonly as; Eol?syster_n ON electrons with position e_|genkbt<i 'Si)
sumed Hamiltonian for single QD’s (s;= = 5 for spin-up and spin-down electrong an external

potential the Feynman path integral can be writteti ds

II. NUMERICAL METHOD

N 2 *x 2 N 2
Pi m™ wg 2 €
H= +——xC |+ —
2 ( 2 i<JZ=l KX =X W Z=J

wherek is the dielectric constanin* is the effective mass,

and w defines the strength of the confining potential. g3
Apart from the interesting physical questions that arise for M2/

guantum dots the reliable prediction of their properties is an

ultimate test of modern methods in quantum chemistry. Due (2

to the compared to atoms very shallow confining potential,

long range electron interactions and correlations play an imwith

portant role in QD’s and QDM’s. Therefore it is misleading

to name them artificial atoms and molecules. Well estab- [A(a,a+1)];

lished and very elaborate methods of quantum chemistry

M

;:[l defA(S8,6+1)]
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>

X exp

might fail in describing them properly. Hartree-Fock and v _Ep_2> > o
spin density functional methods use single Slater determi- = <X'(a) exp( M 2m Xj(at1)), =S,
nants or sums of them to approximate the many-body wave 0 S #s:
function. In spin-density functional methods the approxima- ' e
tion of the functional for the exchange correlation enérdfy ()

adds another source of uncertainty and systematic errors to _ _

this approach. The path integral Monte Carlo methodand the boundary conditiox;(M+1)=x;(1). M is the

(PIMC) used in this paper samples the full many-body wavenumber of so-calledimeslicesof the Feynman paths. In the

function instead. limit M—o Eg. (2) becomes exact. For quantum dots the
In contrast to density functional method®FT) with space dimension id=2 and the (A M)-dimensional inte-

PIMC it is possible to study the temperature dependent propgral given in Eq(2) can be evaluated by standard Metropolis
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Monte Carlo techniques. Due to the determinant the intevalue of a momentum dependent operator. A number of vari-
grand is not always positive and the expectation value of awus different energy estimators has been discussed in the
observableX(x) depending only on position operators has topast6-18

be calculated using To avoid these difficulties we developed a procedure
G which allows the calculation of all energy expectation values
E X QW) from the knowledge of the pair correlation functions
L S (4) L0 =(8(r =[x —x; ) 6)
> sgn(Wy) and the radial denS|ty functions per electron
where X is the value of the observablé and Wy is the pi(r)= (5(r |x |)>_ Q(r) 7

value of the integrand in E@2) in thegth Monte Carlo step.

Equation (4) reveals a severe problem connected with theyherep is the probablllty of finding electronin distancer
path integral for fermions which is commonly denoted as th&rom the center.

fermion sign problem(see, e.g., Refs. 12—14lt can be Due to the particle symmetry we have
shown that the ratio between integrands with positive sign
(W) and negative signW/ ) is approximately given biy*° T1(r), s=s= 1
'y S =S 5
W —w~
Waw- S B(E—Ee)], 5 (D=9 Fiie, si=sj=—% ®
whereEr andEg are the ground state energies of the Fermi 1
system and the corresponding Bose system. It is now obvi- (), si#s
ous that the statistical error in E@t) grows rapidly for small  and
temperaturesl. Moreover the energy difference&Ef—Eg)
will grow with increasing system size causing an increase of pl(r), s=+ E
the statistical error. ! 2
Within PIMC the calculation of the kinetic energy expec- pi(r)= 1 ©
tation value is another critical task. This is merely due to the pH(r), Si=— 7

fact that the Monte Carlo calculation is usually done in po-
sition space and that the discretization of the paths allows bltilizing the hypervirial theorem of Hirschfeld€rthe en-
number of different approaches to calculate the expectatioargy can be written as a sum of ten p#tts

E=Ejin+ Eiin+ Ekin+ Eicn+ Elin+t Eport Eport Eport Eport Epo=—- f dr QT(r)mrvl(r)Jr—fo dr e (r)ra,Vvy(r)

2
NI(NT—1) [ Vo(r) NYNI=1) = | V(1) NlNT avz(r)
+—j0 dr(ryr ot 7 Jo drrH(r)r J’ drh(r)r
NT (e N (= NI(NT—1)
+7Jo erT(r)Vl(r)Jr7J0 eri(r)Vl(r)+TJ dr T (r)Vy(r)
LN =
+wf drril(r)vz(r)+NTle dr TTHr)V,(r). (10

While in density functional approaches the calculation of therules: (1) The determinants have to be calculated very accu-
kinetic energy and the exchange correlation energy is a maately using a more costly algorithm with pivoting?) The
jor topic and subject to permanent discussion, within the patltompletely uncorrelated generation of the Monte Carlo steps
integral approach these energies are included in a naturé essential, i.e., the coordinate to be moved should be cho-
way. sen randomly. Moving the particle coordinates using always
However, the systematic error arising from the limitedthe same sequence produces inaccurate res8Jt#y good
number of timeslice/ and the statistical error of the Monte random number generator withcampletelyuncorrelated se-
Carlo calculation have to be controlled carefully. We quence in all significant bits of a 64 bit real number should
checked our algorithm extensively using eight noninteractinge applied. We therefore developed a 53 bit random number
fermions in a parabolic trap as a test system. We found thaif Marsaglia-Zaman tyge instead of using one of the stan-
at low temperatures where the ratio of signs is around 0.99jard 24 or 32 bit random number generators coming with
convergence can only be achieved obeying the followingstandard system librariegl) Further, to improve the conver-
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. . . functions for four electrons and total spi®s=0 andS=1. The
FIG. 1. Addition energies for quantum dots with up to 11 elec- material constants are=12.9 andhw=3.0 meV.

trons. The circles indicate the results from our path integral calcu-

lations at 10 K, the squares are results of spin density functionahbsolute energy values agree as well @&s@HK DFT calcu-

calculations of Hirose and Wingreen, and the triangles are the exations with the experimental results. However, it should be

perimental results of Taructet al. The error bars for PIMC would  noted that PIMC correctly predicts the drop in the addition

be of the size of the solid circles and are therefore omitted. energy fromN=7 to N=8 while the DFT calculations fail at
this point.

gence a number of different Monte Carlo steps can be ap- The inset in Fig. 1 displays the total spins of the spin

plied, i.e., moving single time slices, moving complete par-configurations with lowest energy as found in DFT and

ticle paths and parts of a path. Our Fortran code isPIMC at 10 K. In DFT calculation$0 K) the spin configu-

completely parallelized using MPI and Lapack. ration of the ground state is determined by Hund'’s rule for
up to 22 electrons. In contrast, in our PIMC calculation at 10
Il. RESULTS K the total spin is not always in accordance with Hund’s

rule. ForN=4 we checked the temperature dependence of
To compare our PIMC calculgtions to experimental datathe spin configuration. &5 K the energy of the spin 0 con-
we calculated the addition energies figuration is 0.01E}, higher than the spin 1 energy indicating
AE=Ey,,—2EN+En_1 (11) a temperfature dependence of the favored spin configuration.
. ) . As an important fact we note that thedependence of the
of a QD with up to 11 electrons using the material constant,qdition energies is not affected by the actual spin configu-
m* =0.062m and«=12.9 for GaAs as given by Hirose and yation. The situation is quite similar to that in transition metal
Wingreen® It is assumed that these parameters mimic the,ysters with extreme small energy differences between
experimental setup of Taructet al? reasonably well. The  states with significantly different magnetic momefts.
strength of the harmonic potential is fixed dtw, As can be inferred from Fig.(2) the radial spin densities
=3.0 meV. The resulting effective atomic units aE;  are significantly different for both spin configurations. The
=10.955 meV for the Hartree energy andy  total potential energy for the spin 1 configuration is about
=10.1886 nm for the Bohr radius. The Boltzmann constan.07 meV lower than that of the spin 0 configuration. At 10
is kg=7.8661x 10 3 E}/K. K this is overcompensated by an 0.27 meV higher kinetic
We performed PIMC simulations for quantum dots with energy(see Table)l Although the kinetic and potential en-
different spin configurations at a fixed temperature of 10 K.ergies for different total spins significantly differ, the total
Due to the fermion sign problem the number of Monte Carloenergies are almost equal. Similar situations are found for
steps necessary to push the statistical error of the total etargerN.
ergy, which has been calculated properly from 25 uncorre- For convenience and easy comparison we determined the
lated subsequences of MC steps, into the range of 0.1% igalue of the dimensionless density parametgr which is
extremely high. The number of Monte Carlo steps rangecsometimes used to characterize quantum (ses, e.g., Ref.
between 2.5 billion steps per particle coordinate ko6  5) to ber,=4.19 forN=4.
and about 10 billion steps fad=12. Figure 1 displays the The energies given in Table | correspond to the integrals
addition energies for quantum dots with up to 11 electronsin Eq. (10). The total kinetic energy which is the sum of all
The circles indicate the results from our path integral calcuEy;, terms is always positive while some of the addends
lations at 10 K, the squares are results of spin density funomight be negative. Table | reveals that larger total spins re-
tional calculations of Hirose and Wingre@rand the tri-  sult in larger kinetic energies. The total potential energy is
angles are the experimental results of Taruebal? Both  almost unchanged, the larger contribution from the trap po-
theoretical calculations reproduce the gen&talependence tential is compensated by a smaller contribution from the
of the addition energies in great detail. Taruehal. give an  Coulomb repulsion. We note that the rafig, between the
estimate of the electron temperature in their experiments dkinetic energy and the total energy is considerably larger for
T=0.2 K. For computational reasons our PIMC calculationsN=4 than for N=9 reflecting the looser binding of the
are performed at 10 K and it cannot be expected that themaller system.
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TABLE I. Kinetic and potential energies as well Bg,= E,;,/Ey; in meV for different electron configu-
rations at 10 K(the numbers in parentheses are the single particle engrgies

PRB 62

N'=2, N!'=2 N'=3, N!=1 N'=5, Nl=4 N'=6, N!=3
Eot 40.83 41.03 169.25 169.82
Exin 7.33 7.60 18.97 19.57
Epot 33.50 33.43 150.28 150.26
Ew 0.18 0.19 0.11 0.12
Elin 8.03(8.03 12.66(8.44) 35.44(14.18 43.74(14.58
= 8.03(8.03 3.55(7.10 27.30(13.65 19.39(12.93
EL —1.31 (-2.62) —3.97 (—2.65) —11.20 (—2.24) —16.87 (—2.25)
EL —6.11 (—3.05) —4.64 (—3.09) —25.84 (—2.58) —23.31 (- 2.59)
Eil —1.31 (-2.62) 0.00(0.00 —6.72 (—2.24) —3.39 (—2.26)
Epot 33.50 33.43 150.28 150.26
Epot 8.03(4.01) 12.66(4.22) 35.44(7.09 43.74(7.30
Epot 8.03(4.01) 3.55(3.55 27.30(6.82 19.39(6.46
Epot 2.62(2.62 7.94(2.65 22.40(2.249 33.73(2.25
Epat 12.21(3.09 9.28(3.09 51.69(2.59 46.62(2.59
Epot 2.62(2.62 0.00(0.00 13.44(2.24 6.78(2.26

Next we consider the dependence of the Wigner crystalstood intuitively. Due to the stronger electron-electron repul-
lization on the temperature and the choice of the materiasions the electrons are fixed in an energetical favorable geo-
constants. The localization of the electrons in space is conmetric configuration and as a consequence thereof the
monly referred to as Wigner crystallization. For quantumrelative kinetic energy is reduced and the difference between
dots the occurrence of well separated humps in the radighe pair correlation functions of equal and opposite spin al-
electron density and the pair correlation functions has beemost vanishegsee Fig. 3. It is an interesting and to our
interpreted as WC. However, it is a nontrivial task to find aknowledge open question, if the crystallization of electrons
general parameter identifying if an electron system is crysean be viewed as a phase transition. We therefore consider
tallized or not. From a solid state physics point of view thenext the temperature dependent properties of a quantum dot
electrons should have a low mobility, i.e., a small kineticwith N=6, S=0, k=3, andZw=5 meV. The results for
energy, and should not interchange their lattice positions. Falemperatures between 10 and 150 K are presented in Table
fermions the localization of single electrons does not makel. Most notablyE,, increases relatively smoothly from 0.07
any sense, and, as stated above, even the decompositionaifl0 K to 0.22 at 150 K. Within our numerical accuracy the
the many-body wave function in sums of determinants ofcaloric curve does not show any evidence of a phase transi-
single particle wave functions is probably a too rough ap-tion. The transition from a crystallized state to an electron
proximation for QD’s. These facts limit the analogies be-fluid seems to be squashy. Of course, from our calculations
tween crystallization in solids and electron systems andve cannot exclude that a phase transition exists for laxger
make the terncrystallizationitself somehow misleading. We
therefore view Wigner crystals as states of the many-body a) b)
wave function with a relatively low kinetic energy. 10X10°” T T T 10310 T TR T T

First we consider the strength of the Wigner crystalliza- —x
tion depending on the choice of the interaction parameters
Figure 3 displays the radial densities and pair correlation
functions for six electrons witts=0, Zw=5 meV, andx
=3.0, 6.0, and 12.9. Of course, for stronger electron repul-—
sions(small ) the electron distributions are broadened. The s,
qualitative picture of the distributions is merely the same. < 40x10°k}" T
For all « shell effects indicated by off-center maximums of N
the radial density occur. However, only far=3 and 6 we P I I
observe a maximum at=0. From our point of view it can- ) \ i
not definitely be decided from this figure if a system is T N N
Wigner crystallized or not. As a parameter reflecting the ®00 S0 15 20 2530 100010 20 30 40 50 60
strength of the WC we employ the ratios between the kinetic rfa, ] rfa, ]
and the total energieBy= Ein/E which are 0.07, 0.10, FIG. 3. Radial density per electraffeft) and pair correlation
and 0.14 fork=3.0, 6.0, and 12.9. Although the radial dis- functions(right) for N=6, S=0, w,=5 meV and dielectric con-
tribution function fork=12.9 is quite narrow, the relative stantsk=3.0, 6.0, and 12.9 at 10 K. The radial density for
mobility for the electrons indicated bl is twice as large =12.9 is scaled by a factor of 3 and the pair correlation functions
as for k=3. The underlying physical process can be underare scaled to have a maximum value-of..
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TABLE II. Kinetic and potential energies for different tempera- 1,2¢10° ————1——1— 5%102 ——T——T——
tures and spin configuratiod' =3, N'=3. The Hartree energy is — 70k ] 1
Ef=202.558 meV,x=3, and%wy=5.0 meV. E, is the ratio 1,0x10° o-OT=30K | -
between the kinetic and the total energy. 5:5%:?(5)(]1(1(

N'=3,N'=3 Eyw Egn (MeV) Eyy (MeV) Ey (MmeV)

T=10 K 0.07 17.70 246.53 264.32 <
T=30 K 0.08 22.93 249.53 272.46 =
T=60 K 0.12 35.39 257.67 293.06
T=90 K 0.16 49.44 267.01 316.46
T=120 K 0.19 64.10 276.84 340.93
T=150 K 0.22 78.49 286.88 365.35

rla, |

or different interaction parameters. Figure 4 displays the ra- FiG. 4. Radial density(left) and pair correlation functions
dial electron densities and the total electron pair correlationyight) for N=6, S=0, iwg=5 meV, k=3.0, and temperatures
function for different temperatures. Up to 60 K the radial T=10, 30, 60, and 150 K.

density shows clear geometric structure effects with two

maximums while at 150 K only a smooth curve resembling ayare, thebrute forcePIMC applied here is able to produce

simple Gaussian remains. very precise results. Different algorithms have been pub-
lished to improve the performance of path integral methods.
IV. CONCLUSION A recent one is thenultilevel blockingmethod published by

Mak et al?® Simulations using this algorithm are expected to

In conclusion, we have found that despite of the notoriousonverge better than our direct treatment since the fermion
fermion sign problem PIMC is capable of answering inter-sign problem is avoided partially. The published results of
esting questions for strongly correlated electron systems likene treatment of quantum dots by Eggeral® do not con-
QD’s and QDM’s. For QD’s PIMC reproduces correctly the firm this expectation. Obviously the advantages of the new
experimental addition energies. Our temperature dependeniethod are more than compensated by other numerical prob-
calculations give new insights into the process of WC. Follems, maybe due to the energy estimator (féedeverthe-
the two-dimensional QD’s a rati&= Ey,/Ei; below 0.1 less, a combination of the multilevel-blocking method and
seems to indicate WC both far and temperature dependent our technique might result in a very powerful tool.
calculations. However, regarding this aspect a more firm
classification parameter, e.g., similar to the Lindemann crite-
rion is desirable.

A comparision to other QMC methods seems to be in We wish to thank théRegionales Rechenzentrum Nieder-
order here. Even our most complicated simulations took lessachserand theKonrad Zuse Institut Berlirior their excel-
than 2 h on a Cray T3E with 62 processors. Taking thdent computer support and E. R. Hilf for stimulating discus-
advantages of modern computer power and optimized softsions.
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