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Classification of phase transitions of finite Bose-Einstein condensates
in power-law traps by Fisher zeros

Oliver Mulken, Peter Borrmann, Jens Harting, and Heinrich Stamerjohanns
Department of Physics, Carl von Ossietzky University Oldenburg, D-26111 Oldenburg, Germany
(Received 20 June 2000; revised manuscript received 27 November 2000; published 5 June 2001

We present a detailed description of a classification scheme for phase transitions in finite systems based on
the distribution of Fisher zeros of the canonical partition function in the complex temperature plane. We apply
this scheme to finite Bose systems in power-law traps within a semi-analytic approach with a continuous
one-particle density of stated3(E)~E®"* for different values ofl and to a three-dimensional harmonically
confined ideal Bose gas with discrete energy levels. Our results indicate that the order of the Bose-Einstein
condensation phase transition sensitively depends on the confining potential.

DOI: 10.1103/PhysRevA.64.013611 PACS nuntber03.75.Fi, 05.30.Jp, 05.20y, 64.60—i

[. INTRODUCTION power-law trap with an effective one-particle density of
states Q(E)=EY ! being formally equivalent to a
In 1924, Bose and Einstein predicted that in a system ofl-dimensional harmonic oscillator or allimensional ideal
bosons at temperatures below a certain critical temperaturgas. We use a classification scheme based on the distribution
Tc, the single-particle ground state is macroscopically occuef zeros of the canonical partition function initially devel-
pied [1]. This effect is commonly referred to as Bose- oped by Grossmaat al.[7] and Fishetet al. [8], which has
Einstein condensation, and a large number of phenomen&gen extended by U$] as a classification scheme for finite
such as the condensation phenomena in alkali-metal atomsystems. On the basis of this classification scheme, we are
the superfluidity of*He, and the superconductivity, are iden- able to extract a qualitative difference between the order of
tified as signatures of this effect. However, the physical situlh® phase transition occurring in Bose-Einstein condensates
ation is very intricate in most experiments. in three-dimensional trapBlO,l]] and in two-dlm_ensmnal
Recent experiments with dilute gases of alkali-metal at{/aPs that was recently discovered by Saforowl. in a gas.
oms in magneti¢2] and optical[3] traps are in some sense of hydrogen atoms absorbed on the surface of liquid helium

the best experimental approximation up to now of the ideaPz]' Since we do not consider particle interactions, this dif-

noninteracting Bose-Einstein system in an external powerfglence is only due to the difference in the confining poten-

law potenFlaI. The achlevement of .ultralow.temperatures by We give a detailed review of the classification scheme in
laser cooling and evaporative cooling provides the opportus

: . . X Sec. II. In Sec. Ill, we present a method for the calculation of
nity to study Bose-Einstein condensation under systematig, " ~anonical partition function in the complex plane and

variation of adjustable external parameters, e.g., the trap 9¢jascribe details of the numerical implementation. Our results
ometry, the number of trapped atoms, the temperature, andy y—1—6 and particle numbers varying from 10 to 300
by the choice of the alkali-metal atoms the effective interpar—4e presented in Sec. Il as well as calculations for a three-

ticle interactions. Even in the approximation of noninteract-gimensional parabolically confined Bose gas.

ing particles, an explanation of these experiments requires

some care, because the number of bosons in these novel traps

?s finite and fix_ed and the standard gra_nd-canonical treatment Il. CLASSIFICATION SCHEME

is not appropriate. The effect of the finite particle numbers

on the second moments of the distribution function, e.g., the In 1952, Yang and Lee showed that the grand-canonical

specific heat and the fluctuation of the ground-state occupgsartition function can be written as a function of its zeros in

tion number, has been addressed in a number of publicatioriee complex fugacity plane, which, for systems with hard-

[4,5]. In [4,6], we have presented a recursion method to calcore interactions and for the Ising model, lie on a unit

culate the canonical partition function for non-interactingcircle [13].

bosons, and we investigated the dependency of the thermo- Grossmannet al. [7] and Fisher[8] extended this ap-

dynamic properties of the condensate on the trap geometnyproach to the canonical ensemble by analytic continuation of
The order of the phase transition in small systems sensihe inverse temperature to the complex plafe:B=p

tively depends on finite-size effects. Compared to the mac+i7. Within this treatment, all phenomenologically known

roscopic system, even for systems as simple as the thregspes of phase transitions in macroscopic systems can be

dimensional ideal gas, the order of the phase transition mightentified from the properties of the distribution of zeros of

change for mesoscopic systems where the number of pathe canonical partition function.

ticles is finite or for trapped gases with different trap geom- In [9], we presented a classification scheme for finite sys-

etries. tems that has its macroscopic equivalent in the scheme given
In this paper, we address the classification of the phasby Grossmann. As usual, the canonical partition function

transition of a finite number of noninteracting bosons in areads
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which we write as a produd(B) = Zjn(B)Ziw(B), where Phase B
Zim(B) describes the limiting behavior &(B5) for T—x,
imposing that lim_.Z(B)=1. This limiting partition
function will only depend on the external potential applied to
the system, whereag;(55) will depend on the specific in-
teraction between the system particles. For example, for an
N-particle system in ad-dimensional harmonic trap,
Zim(B)=B"9N and thus the zeros &(B) are the same as
the zeros oZ;+(B). Since the partition function is an integral
function, the zerosf3,=B* =B +ir(keN) are complex
conjugate and the partition function reads

Z(B) = Zjim(B) Zin( 0)eXp(BgINZin(0))
e
ex .

"B
The zeros ofZ(B) are the poles of the Helmholtz free

energy F(B)=—(1/5)InZ(B), i.e. The free energy is ana-

lytic everywhere in the complex temperature plane except at

the zeros oZ(B). _ The second parameter to describe the distribution of zeros is
Different phases are represented by regions of holomorgiven by y=tanv~(B,— B)/(m,— 1), where v is the

phy that are separated by zeros lying dense on lines in th&qgsing angle of the line of zeros with the real gise Fig.

complex temperature plane. In finite systems, the zeros dg) Tne discretenessf the system is reflected in the imagi-
not squeeze on lines, which leads to a more blurred Separdyry partr, of the zero closest to the real axis.

tion of different phases. We interpret the zeros as boundary |, ihe thermodynamic limit, we have always—0. In

posts between two phases. The distribution of zeros containgq case, the parametarsand y coincide with those defined
the complete thermodynamic infprmation ab_out the systeﬁby Grossmantet al[7], who have shown how different types
an_d _aII '_[her_modynam|_c properties are derlvabl_e_ from It of phase transitions can be attributed to certain values of
Wlth|n this picture, the interaction part of the specific heat ISand y. They claimed thax=0 andy=0 correspond to a
given by first-order phase transition, second-order transitions corre-
spond to G<a<1 with y=0 or y# 0, third-order transitions

to 1=a<2 with arbitrary values ofy, and that all higher
order phase transition corresponddo-1. For macroscopic
systems(with 7;—0), @ cannot be smaller than zero, be-
cause this would cause a divergence of the internal energy.
The zeros of the partition function are poles@§(5B). As  However, in small systems with a finitg this is possible.

can be seen from E@2.3), a zero approaching the real axis  In our classification scheme, we therefore define phase
infinitely close causes a divergence at real temperature. Theansitions in small systems to be of first order fo=0,
contribution of a zerd3, to the specific heat decreases with while second- and higher-order transitions are defined in
increasing imaginary partr,. Thus, the thermodynamic complete analogy to the Grossmann scheme augmented by

Phase A

B,
B,

»
>

B

FIG. 1. Schematic illustration of the zeros in the complex tem-
perature plane.

BCUT

B
1— —
By

B B
B_+ B_* with k=2,3,4 ..., and weapproximate for smalt the den-
k k sity of zeros, by a simple power lag(7)~ 7*. Considering

only the first three zeros the exponentan be estimated as

(731 g(7)

|n T3_|n T

keN

(2.2

a

(2.5

1,1
(B—B)?  (Bt-B)?|
2.3

Cv.im(B)=— kBBZKEN

properties of a system are governed by the zerasadbse to
the real axis.

the third parametet;,. The definition of a critical tempera-
ture B¢ in small systems is crucial and ambiguous since no

The basic idea of the classification scheme for phase tranhermodynamic properties diverge. Thus, different defini-

sitions in small systems presented[#] is that the distribu-
tion of zeros close to the real axis can be described approx

tions are possible. We define the critical temperature as
Beuw=B1— y71, i-€., the crossing point of the approximated

mately by three parameters, where two of them reflect théine of zeros with the real temperature axis. An alternative
order of the phase transition and the third merely the size ofjefinition is the real part of the first complex zeBg. In the

the system.
We assume that the zeros lie on straight liteee Fig. 1
with a discrete density of zeros given by

#(70) = - + -
=5 ,
2\ BBl [Bera— B

(2.9

01361

thermodynamic limit, both definitions coincide.

Comparing the specific heats calculated for different dis-
crete distributions of zeros shows the advantages of this clas-
sification scheme. Figure 2 showa three distributions of
zeros lying on straight lines corresponding to a first-order
transition (@=0 and y=0), a second-order transition(

1-2
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sively. Every pole seems tmadiate onto the real axis and
therefore determines the occupation number at real tempera-
tures. Thisradiation extends over a broad temperature range
so that the occupation number for real temperatures does not
show a discontinuity but rather a smoothed curve. A closer
look at Eq.(2.3) gives the mathematical explanation for this
effect. The discrete distribution of zeros, i.e;>0, inhibits
the specific heat and all other thermodynamic properties to
show a divergency at some critical temperature because the
denominators of the arguments of the sum remain finite.
Without going into a detailed analysis, we note that in the

FIG. 2. Plot of (a) generated zeros lying on straight lines to
simulate first- @=0 andy=0), second-, ¢=0.5 andy=—0.5),
and third- (@=1.5 andy= —1) order phase transitions aio) the
appropriate specific heats per particle.

=0.5 andy=—0.5), and a third-order phase transition (
=1.5, andy= —1) and(b) the pertinent specific heats. In all
cases the specific heat exhibits a hump extending over
finite-temperature region and cannot be used to classify th
phase transition. In contrast, even for very small systems
(large ), the order of the phase transition is extractable
from the distribution of zeros.

The zeros of the canonical partition function have a dis
tinct geometrical interpretation, which explains the smoothe
curves of the specific heat and other thermodynamic proper-
ties in finite systems.

Figure 3 showsga) the ground-state occupation number
| 70(B)|/IN in the complex temperature plane afg) the
ground-state occupation number at real temperatures for a
finite ideal Bose gas oN=120 particles, whereyy(B5) is
given by the derivative of the logarithm of the canonical
partition functionZ(5) with respect to the ground-state en-

thermodynamic limit the parameter is connected to the
critical index for the specific heat by

Cv~(B=B)* . (2.6)

However, since critical indices are used to describe the shape
%f a divergency at the critical point, an extension to small
aystems seems to be more or less academic.
The introduction of complex temperatures might seem ar-
tificial at first sight, but, in fact, the imaginary partg of the
complex zeros3, have an obvious quantum-mechanical in-
terpretation. We write the quantum-mechanical partition
Junction as

Z(B+i7lh)=Tr(exp(—itH/Ah)exp— BH)) (2.7
=(W Jexp( —iTH/A) | W o) (2.9

=<“Pcar(t=0)|q}car(t=7')>a (2.9

ergy e, i.e., 7o(B) =~ (1B) 3. Z(B)/Z(B).

Zeros of the partition function are poles g§(55) and are

introducing acanonical stateas a sum over Boltzmann-
weighted eigenstategV ..) == exp(—Bed2)| ). We ex-
plicitly write the imaginary part as/# since the dimension

indicated by dark spots, which influence the value of thejs 1[energy and the imaginary part therefore can be inter-
ground-state occupation number at real temperatures impregreted as time. Then the imaginary patis of the zeros

(a)o.1s

Mol/N

00 1.0 20 3.0 4.0

T

FIG. 3. Comparison ofa) | 7,|/N with (b) the appropriate value

5.0

resemble those times for which the overlap of the initial ca-
nonical state with the time-evoluted state vanishes. However,
they are not connected to a single system but to a whole
ensemble of identical systems in a heat bath with an initial
Boltzmann distribution.

Ill. BEC IN POWER-LAW TRAPS

In this section, we assume a continuous single-particle
density of stated2(E)=E%"! as an approximation for a
d-dimensional harmonic oscillator or al2limensional ideal
gas. For example, for the harmonic oscillator this corre-
sponds to the limit ofiw—0 and taking only the leading
term of the degeneracy of the single-particle energy levels.
The one-particle partition function is given by the Laplace
transformation

Zl(B)zfdEEd’lexp(—BE)z(d—l)!B’d. (3.1

of 7, at real temperatures for a 120-particle harmonically trappedl he canonical partition function faX noninteracting bosons

ideal Bose gagnote thath =kg=w=1).

can be calculated by the following recursi8i:

013611-3
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FIG. 4. Distribution of zeros for Bose-Einstein condensates with
continuous one-particle density of stat®{E)=E%* for d=1 FIG. 5. Specific heat scaled Io\N of Bose-Einstein condensates
—6. with continuous one-particle density of states fior 1—-6.

N Figure 5 shows the corresponding specific heats calcu-

1
Zn(B)= N kzl Z,(kB)Zy-«(B), B2 Jated using Eq(2.3). As expected, fod=1 the specific heat
has no hump and approaches with increasing temperature the
where Z,(kB) ==;exp(—kBe;) is the one-particle partition classical value. We therefore expel the analysid-efl from
function at temperaturk3 andZ,(B)=1. For small particle the discussions below. Fdr=2—6, the specific heats show
numbers, this recursion works fine, even though its numerihumps or peaks, which get sharper with increasingnd
cal effort grows proportional toN?. increasing particle number. However, from these smooth
With Eq. (3.1) asZ,, Eq. (3.2 leads to a polynomial of curves the orders of the phase transition cannot be deduced.
order N in (1/B)Y for Zy, which can be easily generated In Fig. 6, the classification parametessy,r; defined
USINgMAPLE Or MATHEMATICA . The zeros of this polynomial above are plotted for two to six dimensions and particle
can be found by standard numerical methods. numbers up tdN=100. For all values ofl, the parametet
Figure 4 displays the zeros of thé-particle partition is only a slightly varying function oN and approaches very
function ford=1—6 in the complex temperature plane for fast an almost constant value. Sineés the primary classi-
particle numberdN=25, 50, and 100. Fai=2—6, the ze- fication parameter, from Fig.(8 we can directly infer that
ros approach the positive real axis with increasing particléhe d=2 system exhibits a third-order phase transitian (
number and are shifted to higher temperatures, which is al>1) while the transition for all higher dimensions is of sec-
ready an indicator of phase transitions. Eot 1, the zeros ond order (Gsa<1). ForN=50, the dependence of ond
approach the real axis only at negative temperature. Thits plotted in Fig. Ta). Sincea decreases rather rapidly with
behavior is consistent with the usual prediction that there isncreasingd, it can be speculated that systems corresponding
no Bose-Einstein condensation for the one-dimensional hato a larged exhibit a phase transition that is almost of first
monic oscillator and the two-dimensional ideal Bose gasrder. As mentioned above, for finite systems even values
[10]. a=<0 cannot be excluded for mathematical reasons. We note
The symmetry of the distributions of zeros is due to thethat two-dimensional Bose gases are an interesting and
fact thatZy, is a polynomial in3 ~ 9. For this reason, it can be growing field of research. As is well known, the ideal free
inferred that ford— o the zeros lie on a perfect circle. Bose gas in two dimensionsl€ 1) does not show a phase

013611-4
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FIG. 8. Comparison between calculated zeros of the canonical
partition function for three-dimensional trap geometries wiha

continuous single-particle density of states &bddiscrete energy
levels forN=40.

condensation is possible even though it is called a quasicon-
densate. In our notion, the quasicondensate is just a third-
order phase transition. Thus, our results are in complete
agreement with recent experiments and earlier theoretical
work. An interesting question in this respect is whether the
order of the transition changes fde=2 in the limit N—oo.
Additional calculations for large, which are not printed in

Fig. 6, indicate thata approaches 1 or might even get
smaller. Note thatl=2 is equivalent to a hypothetical four-
dimensional ideal Bose gas or bosons confined in a two-
dimensional parabolic trap. Our results indicate that the order
of the phase transition depends sensitivelydofor values
around 2. This might be the reason why phase transitions in
three space dimensions are sometimes classified as second-
and sometimes as third-order phase transitions.

The parameterr; is a measure of the finite size of the
system, i.e., the scaling behaviornfas a function oN is a
measure of how fast a system approaches a ritheorder
phase transition in the Ehrenfest sense. Nidependence of
7, is displayed in Fig. &). The scaling behavior can be
approximated byr;~N~? with & ranging between 1.06 and
1.12 ford=2-6.

The d dependence of the classification parameter is visu-
alized in Fig. 7 for 50 particles. For this system size, we
found a~d~#3 and 7;~d~*5.

The results presented above for continuous single-particle
densities of state® (E) = E%~* are obtained within semiana-

transition due to thermal fluctuations that destabilize the contytical calculations. In order to compare these results to sys-
densate 14]. Switching on a confining potential greatly in- tems with a discrete level density, we adopt as a reference
fluences the properties of the gas, the thermal fluctuations ak/stem the three-dimensional harmonic oscillator with the
suppressed, and the gas will show Bose-Einstein condenspartition function given by

tion. Recent experimenid 2] have shown that Bose-Einstein

@\ (b)oss
(o)
1.0 0.06 |
- o
5 o0s a | . = 0.04
o O B B o
eof ° 8 0.02 |
o)
0 o0 o
sl 0.00 . . X
2 3 45067 8 910 2 4 6 s 10
d d

FIG. 7. Classification parameters fr=50 for different densi-

ties of state€)(E)=EY ! andd=2-10.

2(8)= 2 (n+2)(n+1)

2 5 exp(— B(n+3/2)),

(3.3

with 2= w=kg=1.

Figure 8a) displays the zeros of the partition function
(3.1 for d=2 andd=3. Figure &b) displays a contour plot
of the absolute value of the ground-state occupation number
no(B) = — (1/B) 9. Z(B)/Z(B) with Z given by Eq.(3.3) cal-
culated using an alternative recursion form#a The zeros

of Z are poles ofyy and are indicated by dark spots in this
figure.

013611-5
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Analyzing the distribution of zeros consolidates our
speculation that the order of the phase transition depends
sensitively ond. The distribution of zeros behaves like the
above calculated values fat=2 but quantitatively liked 0.4
=3. Since the degeneracy of the three-dimensional harmoni- R
cally confln(_ed ideal .Bose gas is a second-order polynomial, @ g3
the quadratic term is not the only term that must be taken
into account. The linear term becomes dominant for lower -
temperatures, so for very low temperatures the best approxi- 0.2
mation of a continuous one-particle density of states is )
Q(E)=E. The parametew supports this statemef@], i.e.,

a resides in a region above 1, whereas the parametsz-
haves like thed=3 case. Finally, the parametey, which is 0 100 200 300 400

a measure for the discreteness of the system, shows a N

~N~%9 dependence that is comparable to the onedor

=2. Thus, for small systems the phase transition is of third FIG. 9. Comparison between three different approaches to de-
order; it can be speculated whether it becomes a secondine a critical temperature for phase transitions in finite systems.
order transition in the thermodynamic limit. _

Our calculations are in very good agreement with recenplane, we have shown the advantages of this approach. The
theoretical works, not only qualitatively but also quantita- distribution of the so-called Fisher zerBg draws enlighten-
tively [15,16). Comparing theeritical temperature, which we INg pictures even for small systems, whereas the usually re-
defined in Sec. I, with the usually utilized temperature of theferred to thermodynamic properties such as the specific heat
peak of the specific he@®(Cy ma) OF the grand canonically f_aul to classify the phase_ transitions properly. The classifica-
calculatedT .~ N3 confirms our approach. In Fig. 9, three tion scheme presented in this paper enables us to name the
possible definitions of the critical temperature are given thafrder of the transition in a nonambiguous way. The complex

all coincide in the thermodynamic limit. All definitions show Parts 7 of the zerosB, resemble times for which a whole
a B~N~* dependence witp ranging betweed and 3. ensemble of identical systems under consideration in a heat

bath with an initial Boltzmann distribution loses its memory.
We have applied this to ideal noninteracting Bose gases
confined in power-law traps. We have found that the order of
Starting with the old ideas of Yang and Lee and Grossthe phase transition sensitively depends on the single-particle
mannet al, we have developed a classification scheme fodensity of states generated by the confining potential. The
phase transitions in finite systems. Based on the analytic corhistribution of zeros exactly reveals the order of the phase

0.5 T T T T T T T
i = I'))(Cv,m.'::lx) 1

A Bcut _

a B, i

A5 . -

0.1 1 | 1 | 1 | 1

IV. CONCLUSION

tinuation of the inverse temperatug@ into the complex

transition in finite systems.
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