204 research outputs found
Facilitating goal-oriented behaviour in the Stroop task: when executive control is influenced by automatic processing.
A portion of Stroop interference is thought to arise from a failure to maintain goal-oriented behaviour (or goal neglect). The aim of the present study was to investigate whether goal- relevant primes could enhance goal maintenance and reduce the Stroop interference effect. Here it is shown that primes related to the goal of responding quickly in the Stroop task (e.g. fast, quick, hurry) substantially reduced Stroop interference by reducing reaction times to incongruent trials but increasing reaction times to congruent and neutral trials. No effects of the primes were observed on errors. The effects on incongruent, congruent and neutral trials are explained in terms of the influence of the primes on goal maintenance. The results show that goal priming can facilitate goal-oriented behaviour and indicate that automatic processing can modulate executive control
Modifications to the Aesop's Fable paradigm change New Caledonian crow performances
While humans are able to understand much about causality, it is unclear to what extent non-human animals can do the same. The Aesop's Fable paradigm requires an animal to drop stones into a water-filled tube to bring a floating food reward within reach. Rook, Eurasian jay, and New Caledonian crow performances are similar to those of children under seven years of age when solving this task. However, we know very little about the cognition underpinning these birds' performances. Here, we address several limitations of previous Aesop's Fable studies to gain insight into the causal cognition of New Caledonian crows. Our results provide the first evidence that any non-human animal can solve the U-tube task and can discriminate between water-filled tubes of different volumes. However, our results do not provide support for the hypothesis that these crows can infer the presence of a hidden causal mechanism. They also call into question previous object-discrimination performances. The methodologies outlined here should allow for more powerful comparisons between humans and other animal species and thus help us to determine which aspects of causal cognition are distinct to humans.Publisher PDFPeer reviewe
Misrepresentation of Neuroscience Data Might Give Rise to Misleading Conclusions in the Media: The Case of Attention Deficit Hyperactivity Disorder
BACKGROUND: There is often a huge gap between neurobiological facts and firm conclusions stated by the media. Data misrepresentation in the conclusions and summaries of neuroscience articles might contribute to this gap. METHODOLOGY/PRINCIPAL FINDINGS: Using the case of attention deficit hyperactivity disorder (ADHD), we identified three types of misrepresentation. The first relies on prominent inconsistencies between results and claimed conclusions and was observed in two scientific reports dealing with ADHD. Only one out of the 61 media articles echoing both scientific reports adequately described the results and, thus questioned the claimed conclusion. The second type of misrepresentation consists in putting a firm conclusion in the summary while raw data that strongly limit the claim are only given in the results section. To quantify this misrepresentation we analyzed the summaries of all articles asserting that polymorphisms of the gene coding for the D4 dopaminergic receptor are associated with ADHD. Only 25 summaries out of 159 also mentioned that this association confers a small risk. This misrepresentation is also observed in most media articles reporting on ADHD and the D4 gene. The third misrepresentation consists in extrapolating basic and pre-clinical findings to new therapeutic prospects in inappropriate ways. Indeed, analysis of all ADHD-related studies in mice showed that 23% of the conclusions were overstated. The frequency of this overstatement was positively related with the impact factor of the journal. CONCLUSION/SIGNIFICANCE: Data misrepresentations are frequent in the scientific literature dealing with ADHD and may contribute to the appearance of misleading conclusions in the media. In synergy with citation distortions and publication biases they influence social representations and bias the scientific evidence in favor of the view that ADHD is primarily caused by biological factors. We discuss the social consequences and the causes of data misrepresentations and suggest a few corrective actions
Basal Ganglia Preferentially Encode Context Dependent Choice in a Two-Armed Bandit Task
Decision is a self-generated phenomenon, which is hard to track with standard time averaging methods, such as peri-event time histograms (PETHs), used in behaving animals. Reasons include variability in duration of events within a task and uneven reaction time of animals. We have developed a temporal normalization method where PETHs were juxtaposed all along task events and compared between neurons. We applied this method to neurons recorded in striatum and GPi of behaving monkeys involved in a choice task. We observed a significantly higher homogeneity of neuron activity profile distributions in GPi than in striatum. Focusing on the period of the task during which the decision was taken, we showed that approximately one quarter of all recorded neurons exhibited tuning functions. These so-called coding neurons had average firing rates that varied as a function of the value of both presented cues, a combination here referred to as context, and/or value of the chosen cue. The tuning functions were used to build a simple maximum likelihood estimation model, which revealed that (i) GPi neurons are more efficient at encoding both choice and context than striatal neurons and (ii) context prediction rates were higher than those for choice. Furthermore, the mutual information between choice or context values and decision period average firing rate was higher in GPi than in striatum. Considered together, these results suggest a convergence process of the global information flow between striatum and GPi, preferentially involving context encoding, which could be used by the network to perform decision-making
Exploring the role of structure in a time constrained decision task
The structure of the basal ganglia is remarkably similar across a number of
species (often described in terms of direct, indirect and hyperdirect pathways)
and is deeply involved in decision making and action selection. In this
article, we are interested in exploring the role of structure when solving a
decision task while avoiding to make any strong assumption regarding the actual
structure. To do so, we exploit the echo state network paradigm that allows to
solve complex task based on a random architecture. Considering a temporal
decision task, the question is whether a specific structure allows for better
performance and if so, whether this structure shares some similarity with the
basal ganglia. Our results highlight the advantage of having a slow (direct)
and a fast (hyperdirect) pathway that allows to deal with late information
during a decision making task
Habits That Contradict Rewards
International audienceDecision-making is a critical skill for animals and au- tonomous robots alike. Whether you are a rabbit or a driverless car, you constantly need to make appropriate decisions. This work stresses the importance of taking into account habit formation in decision-making and goal-directed behaviors such as intrinsic motivation, especially as it pertains to sensorimotor learning
Low statistical power in biomedical science:a review of three human research domains
Studies with low statistical power increase the likelihood that a statistically significant finding represents a false positive result. We conducted a review of meta-analyses of studies investigating the association of biological, environmental or cognitive parameters with neurological, psychiatric and somatic diseases, excluding treatment studies, in order to estimate the average statistical power across these domains. Taking the effect size indicated by a meta-analysis as the best estimate of the likely true effect size, and assuming a threshold for declaring statistical significance of 5%, we found that approximately 50% of studies have statistical power in the 0–10% or 11–20% range, well below the minimum of 80% that is often considered conventional. Studies with low statistical power appear to be common in the biomedical sciences, at least in the specific subject areas captured by our search strategy. However, we also observe evidence that this depends in part on research methodology, with candidate gene studies showing very low average power and studies using cognitive/behavioural measures showing high average power. This warrants further investigation
A Mathematical Bias
Any Mathematical framework inside which we formalize explanations limits the scope of behaviors we may consider and the type of explanations we might provide. The problem is even more acute when a model provides accurate predictions. This naturally leads us to restrict our investigation within the chosen framework, making us blind to alternatives
A Natural History of Skills
International audienceThe dorsal pallium (a.k.a. the cortex in the mammals) makes a large loop circuit with the basal ganglia and the thalamus known to control and adapt behavior but the who's who of the functional roles of these structures is still debated. Influenced by the Triune brain theory that was proposed in the early sixties, many current theories propose a hierarchical organization on the top of which stands the cortex to which the subcortical structures are subordinated. In particular, habits formation has been proposed to reflect a switch from conscious on-line control of behavior by the cortex, to a fully automated subcortical control. In this review, we propose to revalue the function of the network in light of the current experimental evidence concerning the anatomy and physiology of the basal ganglia-cortical circuits in vertebrates. We briefly review the current theories and show that they could be encompassed in a broader framework of skill learning and performance. Then, after reminding the state of the art concerning the anatomical architecture of the network and the underlying dynamic processes, we summarize the evolution of the anatomical and physiological substrate of skill learning and performance among vertebrates. We then lay out our hypothesis that the development of automatized skills relies on the BG teaching cortical circuits and is actually a late feature linked with the development of a specialized cortex or pallium that evolved in parallel in different taxa. We finally propose a minimal computational framework where this hypothesis can be explicitly implemented and tested
A Computational Model of Dual Competition between the Basal Ganglia and the Cortex
International audienceWe propose a model that includes interactions between the cortex, the basal ganglia and the thalamus based on a dual competition. We hypothesize that the striatum, the subthalamic nucleus, the internal pallidum (GPi), the thalamus, and the cortex are involved in closed feedback loops through the hyperdirect and direct pathways. These loops support a competition process that results in the ability of basal ganglia to make a cognitive decision followed by a motor one. Considering lateral cortical interactions, another competition takes place inside the cortex allowing the latter to make a cognitive and a motor decision. We show how this dual competition endows the model with two regimes. One is driven by reinforcement learning, the other by Hebbian learning. The final decision is made according to a combination of these two mechanisms with a gradual transfer from the former to the latter. We confirmed these theoretical results on primates (Macaca mulata) using a novel paradigm predicted by the model
- …