101 research outputs found

    Differential binding regulation of microtubule-associated proteins MAP1A, MAP1B, and MAP2 by tubulin polyglutamylation.

    Get PDF
    The major neuronal post-translational modification of tubulin, polyglutamylation, can act as a molecular potentiometer to modulate microtubule-associated proteins (MAPs) binding as a function of the polyglutamyl chain length. The relative affinity of Tau, MAP2, and kinesin has been shown to be optimal for tubulin modified by approximately 3 glutamyl units. Using blot overlay assays, we have tested the ability of polyglutamylation to modulate the interaction of two other structural MAPs, MAP1A and MAP1B, with tubulin. MAP1A and MAP2 display distinct behavior in terms of tubulin binding; they do not compete with each other, even when the polyglutamyl chains of tubulin are removed, indicating that they have distinct binding sites on tubulin. Binding of MAP1A and MAP1B to tubulin is also controlled by polyglutamylation and, although the modulation of MAP1B binding resembles that of MAP2, we found that polyglutamylation can exert a different mode of regulation toward MAP1A. Interestingly, although the affinity of the other MAPs tested so far decreases sharply for tubulins carrying long polyglutamyl chains, the affinity of MAP1A for these tubulins is maintained at a significant level. This differential regulation exerted by polyglutamylation toward different MAPs might facilitate their selective recruitment into distinct microtubule populations, hence modulating their functional properties

    Complete exon sequencing of all known Usher syndrome genes greatly improves molecular diagnosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Usher syndrome (USH) combines sensorineural deafness with blindness. It is inherited in an autosomal recessive mode. Early diagnosis is critical for adapted educational and patient management choices, and for genetic counseling. To date, nine causative genes have been identified for the three clinical subtypes (USH1, USH2 and USH3). Current diagnostic strategies make use of a genotyping microarray that is based on the previously reported mutations. The purpose of this study was to design a more accurate molecular diagnosis tool.</p> <p>Methods</p> <p>We sequenced the 366 coding exons and flanking regions of the nine known USH genes, in 54 USH patients (27 USH1, 21 USH2 and 6 USH3).</p> <p>Results</p> <p>Biallelic mutations were detected in 39 patients (72%) and monoallelic mutations in an additional 10 patients (18.5%). In addition to biallelic mutations in one of the USH genes, presumably pathogenic mutations in another USH gene were detected in seven patients (13%), and another patient carried monoallelic mutations in three different USH genes. Notably, none of the USH3 patients carried detectable mutations in the only known USH3 gene, whereas they all carried mutations in USH2 genes. Most importantly, the currently used microarray would have detected only 30 of the 81 different mutations that we found, of which 39 (48%) were novel.</p> <p>Conclusions</p> <p>Based on these results, complete exon sequencing of the currently known USH genes stands as a definite improvement for molecular diagnosis of this disease, which is of utmost importance in the perspective of gene therapy.</p

    Syndrome de Usher (physiopathologie et corrélations phénotype/génotype)

    No full text
    PARIS-BIUP (751062107) / SudocSudocFranceF

    Usher syndrome (sensorineural deafness and retinitis pigmentosa): pathogenesis, molecular diagnosis and therapeutic approaches

    No full text
    International audiencePurpose of review Usher syndrome (USH) is the most prevalent cause of hereditary deafness–blindness in humans. In this review, we pinpoint new insights regarding the molecular mechanisms defective in this syndrome, its molecular diagnosis and prospective therapies.Recent findings Animal models wherein USH proteins were targeted at different maturation stages of the auditory hair cells have been engineered, shedding new light on the development and functioning of the hair bundle, the sound receptive structure. Improved protocols and guidelines for early molecular diagnosis of USH (USH genotyping microarrays, otochips and complete Sanger sequencing of the 366 coding exons of identified USH genes) have been developed. Approaches to alleviate or cure hearing and visual impairments have been initiated, leading to various degrees of functional rescuing.Summary Whereas the mechanisms underlying hearing impairment in USH patients are being unraveled, showing in particular that USH1 proteins are involved in the shaping of the hair bundle and the functioning of the mechanoelectrical transduction machinery, the mechanisms underlying the retinal defects are still unclear. Efforts to improve clinical diagnosis have been successful. Yet, despite some encouraging results, further development of therapeutic approaches is necessary to ultimately treat this dual sensory defect

    Deafness: from genetic architecture to gene therapy

    No full text
    International audienceProgress in deciphering the genetic architecture of human sensorineural hearing impairment (SNHI) or loss, and multidisciplinary studies of mouse models, have led to the elucidation of the molecular mechanisms underlying auditory system function, primarily in the cochlea, the mammalian hearing organ. These studies have provided unparalleled insights into the pathophysiological processes involved in SNHI, paving the way for the development of inner-ear gene therapy based on gene replacement, gene augmentation or gene editing. The application of these approaches in preclinical studies over the past decade has highlighted key translational opportunities and challenges for achieving effective, safe and sustained inner-ear gene therapy to prevent or cure monogenic forms of SNHI and associated balance disorders

    Defect in the gene encoding the EAR/EPTP domain-containing protein TSPEAR causes DFNB98 profound deafness.

    No full text
    International audienceWe report a consanguineous Iranian family affected by congenital profound sensorineural deafness segregating in an autosomal recessive mode. Auditory tests implicated at least a cochlear defect in these patients. We mapped the deafness, autosomal recessive (DFNB) locus involved by linkage analysis to a 4.8 Mb region at chromosome 21q22.3-qter. Exclusion of the DFNB8/10 gene TMPRSS3, located in this chromosomal interval, led us to identify a new deafness locus, DFNB98. Whole exome sequencing allowed us to identify a homozygous frame-shifting mutation (c.1726G>T+c.1728delC) in the gene TSPEAR (thrombospondin-type laminin G domain and EAR repeats). This truncating mutation (p.V576LfsX37) impeded the secretion of the encoded protein by cells transfected with the mutated gene. Alternative splicing of TSPEAR transcripts predict two protein isoforms, 522 and 669 amino acids in length, both of which would be affected by the mutation. These isoforms are composed of a thrombospondin-type laminin G (TSP) domain followed by seven tandemly organized epilepsy-associated repeats (EARs), probably forming a ÎČ-propeller domain. Tspear is expressed in a variety of murine tissues. Only the larger Tspear transcript was found in the cochlea, and the protein was detected by immunofluorescence at the surface of the hair bundles of sensory cells. The mammalian EAR protein family includes six known members. Defects in four of them, i.e. Lgi1, Lgi2, Vlgr1 and, we show here, TSPEAR, cause disorders with auditory features: epilepsy, which can include auditory features in humans; audiogenic seizures in animals; and/or hearing impairments in humans and mice. These observations demonstrate that EAR-containing proteins are essential for the development and function of the auditory system

    Contributions of Age-Related and Audibility-Related Deficits to Aided Consonant Identification in Presbycusis: A Causal-Inference Analysis

    No full text
    International audienceThe decline of speech intelligibility in presbycusis can be regarded as resulting from the combined contribution of two main groups of factors: (1) audibility-related factors and (2) age-related factors. In particular, there is now an abundant scientific literature on the crucial role of suprathreshold auditory abilities and cognitive functions, which have been found to decline with age even in the absence of audiometric hearing loss. However, researchers investigating the direct effect of aging in presbycusis have to deal with the methodological issue that age and peripheral hearing loss covary to a large extent. In the present study, we analyzed a dataset of consonant-identification scores measured in quiet and in noise for a large cohort (n = 459, age = 42-92) of hearing-impaired (HI) and normal-hearing (NH) listeners. HI listeners were provided with a frequency-dependent amplification adjusted to their audiometric profile. Their scores in the two conditions were predicted from their pure-tone average (PTA) and age, as well as from their Extended Speech Intelligibility Index (ESII), a measure of the impact of audibility loss on speech intelligibility. We relied on a causal-inference approach combined with Bayesian modeling to disentangle the direct causal effects of age and audibility on intelligibility from the indirect effect of age on hearing loss. The analysis revealed that the direct effect of PTA on HI intelligibility scores was 5 times higher than the effect of age. This overwhelming effect of PTA was not due to a residual audibility loss despite amplification, as confirmed by a ESII-based model. More plausibly, the marginal role of age could be a consequence of the relatively little cognitively-demanding task used in this study. Furthermore, the amount of variance in intelligibility scores was smaller for NH than HI listeners, even after accounting for age and audibility, reflecting the presence of additional suprathreshold deficits in the latter group. Although the non-sense-syllable materials and the particular amplification settings used in this study potentially restrict the generalization of the findings, we think that these promising results call for a wider use of causal-inference analysis in audiology, e.g., as a way to disentangle the influence of the various cognitive factors and suprathreshold deficits associated to presbycusis

    Fundus autofluorescence and optical coherence tomography in relation to visual function in Usher syndrome type 1 and 2

    Get PDF
    Purpose of this study was to characterize retinal disease in Usher syndrome using fundus autofluorescence and optical coherence tomography. Study included 54 patients (26 male, 28 female) aged 7–70 years. There were 18 (33%) USH1 and 36 (67%) USH2 patients. 49/52 (94%) patients were found to carry at least one mutation in Usher genes. Ophthalmological examination included assessment of Snellen visual acuity, color vision with Ishihara tables, Goldmann visual fields (targets II/1–4 and V/4), microperimetry, fundus autofluorescence imaging and optical coherence tomography. Average age at disease onset (nyctalopia) was significantly lower in USH1 than USH2 patients (average 9 vs. 17 years, respectively; p < 0.01); however no significant differences were found regarding type of autofluorescence patterns, frequency of foveal lesions and CME, rate of disease progression and age at legal blindness. All representative eyes had abnormal fundus autofluorescence of either hyperautofluorescent ring (55%), hyperautofluorescent foveal patch (35%) or foveal atrophy (10%). Disease duration of more than 30 years was associated with a high incidence of abnormal central fundus autofluorescence (patch or atrophy) and visual acuity loss
    • 

    corecore