4 research outputs found

    Slow life history and rapid extreme flood: demographic mechanisms and their consequences on population viability in a threatened amphibian

    No full text
    International audience1. In the Northern Hemisphere, an increase in both the frequency and magnitude of violent flooding events has been reported due to climate change. According to life history theory, one might postulate that in ‘slow’ species: (i) environmental canalisation may act as a selective force that minimises to some extent adult survival variations caused by catastrophic flood and (ii) extreme flooding events would cause important variations in recruitment and young survival. Hence, it may be hypothesised that (iii) the population growth rate of ‘slow’ species might be relatively insensitive to changes in the frequency of extreme climatic events if adult survival remains largely unaffected.2. In this study, we investigated how extreme rainfall events resulting in severe flood impact popula- tion dynamics of a long-lived endangered amphibian, the yellow-bellied toad (Bombina variegata: Bombinatoridae). To address this issue, we used capture–recapture (CR) data collected on two populations (768 and 1154 individuals identified) in southern France and developed multi-event CR models.3. Our results indicated that extreme flooding did not cause any variation in sub-adult or adult survival, whereas recruitment and juvenile survival were negatively impacted. Furthermore, our simulations indicated that the population growth rate was only marginally sensitive to potential changes in the frequency of extreme flooding in the future.4. Hence, we suggest that extreme flooding does not appear to be a proximal factor of extinction risk for this endangered amphibian species

    Demographic responses to weather fluctuations are context dependent in a long-lived amphibian

    No full text
    International audienceWeather fluctuations have been demonstrated to affect demographic traits in many species. In long-lived organisms, their impact on adult survival might be buffered by the evolution of traits that reduce variation in interannual adult survival. For example, skipping breeding is an effective behavioral mechanism that may limit yearly variation in adult survival when harsh weather conditions occur; however, this in turn would likely lead to strong variation in recruitment. Yet, only a few studies to date have examined the impact of weather variation on survival, recruitment and breeding probability simultaneously in different populations of the same species. To fill this gap, we studied the impact of spring temperatures and spring rainfall on survival, on reproductive skipping behavior and on recruitment in five populations of a long-lived amphibian, the yellow-bellied toad (Bombina variegata). Based on capture–recapture data, our findings demonstrate that survival depends on interactions between age, population and weather variation. Varying weather conditions in the spring result in strong variation in the survival of immature toads, whereas they have little effect on adult toads. Breeding probability depends on both the individual’s previous reproductive status and on the weather conditions during the current breeding season, leading to high interannual variation in recruit- ment. Crucially, we found that the impact of weather variation on demographic traits is largely context dependent and may thus differ sharply between populations. Our results suggest that studies predicting the impact of climate change on population dynamics should be taken with caution when the relationship between climate and demo- graphic traits is established using only one population or few populations. We therefore highly recommend further research that includes surveys replicated in a substantial number of populations to account for context-dependent variation in demographic processes

    Contrasting patterns of environmental fluctuation contribute to divergent life histories among amphibian populations

    No full text
    International audienceBecause it modulates the fitness returns of possible options of energy expenditure at each ontogenetic stage, environmental stochasticity is usually considered a selective force in driving or constraining possible life histories. Divergent regimes of envi- ronmental fluctuation experienced by populations are expected to generate differences in the resource allocation schedule between survival and reproductive effort and outputs. To our knowledge, no study has previously examined how different regimes of stochastic variation in environmental conditions could result in changes in both the temporal variation and mean of demographic parameters, which could then lead to intraspecific variation along the slow–fast continuum of life history tactics. To investigate these issues, we used capture–recapture data collected on five populations of a long-lived amphibian (Bombina variegata) experiencing two distinct levels of stochastic environmental variation: (1) constant availability of breeding sites in space and time (predictable environment), and (2) variable spatio-temporal availability of breeding sites (unpredictable environment). We found that female breeding propensity varied more from year to year in unpredictable than in pre- dictable environments. Although females in unpredictable environments produced on average more viable offspring per year, offspring production was more variable between years. Survival at each ontogenetic stage was slightly lower and varied significantly more from year to year in unpredictable environments. Taken together, these results confirm that increased environmental stochasticity can modify the resource allocation schedule between survival and reproductive effort and outputs and may lead to intraspecific variation along the slow–fast continuum of life history tactics

    Diverse aging rates in ectothermic tetrapods provide insights for the evolution of aging and longevity

    Get PDF
    Comparative studies of mortality in the wild are necessary to understand the evolution of aging; yet, ectothermic tetrapods are underrepresented in this comparative landscape, despite their suitability for testing evolutionary hypotheses. We present a study of aging rates and longevity across wild tetrapod ectotherms, using data from 107 populations (77 species) of nonavian reptiles and amphibians. We test hypotheses of how thermoregulatory mode, environmental temperature, protective phenotypes, and pace of life history contribute to demographic aging. Controlling for phylogeny and body size, ectotherms display a higher diversity of aging rates compared with endotherms and include phylogenetically widespread evidence of negligible aging. Protective phenotypes and life-history strategies further explain macroevolutionary patterns of aging. Analyzing ectothermic tetrapods in a comparative context enhances our understanding of the evolution of aging
    corecore