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Abstract:  

 Comparative studies of mortality in the wild are necessary to understand the evolution of 

aging, yet ectothermic tetrapods are under-represented in this comparative landscape despite 

their suitability for testing evolutionary hypotheses. We provide the first comprehensive study of 

aging rates and longevity across tetrapod ectotherms in the wild, utilizing data from 107 

populations across      77 species      of reptiles and amphibians. We tested hypotheses of how 

thermoregulatory mode, environmental temperature, protective phenotypes, and pace of life 

contribute to aging. Controlling for phylogeny and body size, ectotherms displayed a higher 

diversity of aging rates than endotherms, and included many groups with negligible aging. 

Protective phenotypes and life-history tactics further explained macroevolutionary patterns of 

aging. By including ectothermic tetrapods, our comparative analyses enhance our understanding 

of aging evolution. 

One-Sentence Summary: Ectothermic tetrapods included many species with negligible aging in 

the wild; protective phenotypes (e.g., armor and venom), temperature, and life-history tactics co-

varied      with macroevolutionary patterns of aging in ectotherms. 

Main Text: Comparative studies of aging rates of animals in the wild are key     for assessing the 

potential limits of longevity      and understanding            ecological and evolutionary factors 

shaping variation in aging strategies (1, 2). Demographic indicators of aging have generally 

focused on adult longevity      and changing      mortality rates      with advancing adult age. Past 

comparative studies have provided important insights regarding the evolution of demographic 

aging in the endothermic tetrapod groups of birds and mammals (e.g., 2–6). However, 

ectothermic tetrapods (i.e.,      reptiles and amphibians) hold most of the records for animal 

longevity, and comprise      26 of the 30 known records for vertebrate species that can live over 
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100 years (7, 8) (examples include Galapagos tortoises, eastern box turtles, European pond 

turtles, and proteus salamanders). Additionally, some ectothermic tetrapods may exhibit low or 

even negligible mortality and reproductive aging (1, 9–14). U     nderstanding whether and how 

natural selection has shaped mortality trajectories and longevity requires testing if these species-

specific      results are anomalies that evolved in specific lineages, or if they are common and 

repeated evolutionary outcomes. The lack of comparative analyses of aging in ectothermic 

tetrapods is a major gap in our knowledge, but it is not surprising;                ectotherms      are 

often secretive and/or seasonally active,       and      many species have            long generation 

times and sparse population densities. Long-term data collection of      ectotherms in the wild is 

thus especially challenging. A comprehensive analysis of aging across ectothermic tetrapods 

requires decades of field-based research, international collaborations, and powerful quantitative 

tools. Integrating these efforts allows for using ectotherms to test key evolutionary hypotheses of 

aging (15), and for a phylogenetic understanding of the evolution of aging in tetrapods. 

The evolutionary genetics of aging hinge on age-specific mutation-selection balance 

trajectories where mutations have age-specific effects that are      strictly deleterious in later adult 

stages or ages, or beneficial earlier (i.e., antagonistically pleiotropic, 16). Hypotheses for how 

natural selection and the environment interact to shape this balance were first formulated by 

Medawar (17), and further developed by Hamilton (18) and others (19–21). In ectotherms, body 

temperature varies with the environment and, because metabolism responds to temperature, 

ectothermic metabolism and cellular processes can downregulate in cold temperatures, allowing 

for extended periods of brumation and aestivation.  In addition, controlling for body size, 

ectotherms have lower resting metabolic rates than endotherms (23). Accordingly, the 

Thermoregulatory Mode Hypothesis predicts that ectothermic lineages have evolved lower aging 
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rates and greater longevity      than their similarly sized endothermic counterparts (22).      

Layered on top of metabolic mode, temperature itself is expected to be a strong driver of 

mortality, impacting both the evolution and the plasticity of aging (24, but see 25). In 

endotherms, species with lower body temperatures live longer and age slower than those with 

higher body temperatures (22, 26), so ectotherms in cooler climates may also exhibit longer 

lifespans and slower aging compared to those in warmer climates (Temperature Hypothesis, 

hereafter).      

Phenotypes that alter age-specific mutation-selection trajectories would be expected to 

result in the evolution of altered rates of aging (18), provided genetic variation exists (21, 27). 

For example, species with phenotypes that reduce mortality risk are expected to have lower rates 

of aging than those without (15) (the so-called Protective Phenotypes Hypothesis). Previous 

work shows that ectotherm groups with chemical protection mechanisms      can live longer than 

those that do not, though how this trait affects the rate of aging remains unknown (28, 29). 

Tetrapod ectotherms are well-suited for enabling direct comparisons of the rates of aging among      

species with and      without phenotypes that have such physical or chemical protections. Within 

reptiles, diverse morphological traits may confer protection from predation, including turtle 

shells, crocodilian armor, and snake venom (even if such traits are exaptations). Similarly, in 

amphibians, many species produce toxic or unpalatable skin secretions (30). Despite this, the 

Protective Phenotypes Hypothesis has not been tested broadly within a phylogenetic framework 

(but see 28). 

Aging and longevity may co-evolve either through direct or indirect selection on life-

history traits that are genetically correlated. Under antagonistic pleiotropy, genes that confer 

greater fitness in early life relative to late life will increase in frequency in populations that are 
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skewed toward younger age classes (18). Because many ectothermic tetrapods have 

indeterminate growth and fecundity (31, 32), life-history theory predicts that such species should 

have stronger selection against deleterious late-age mutations relative to species with determinate 

growth and fecundity. Indeed, any species in which      older age classes contribute relatively 

more to population growth (e.g., fecundity, behavior)      relative to other species should have 

concomitant slower aging. Thus, the aging      rate may evolve from genetic co     variation among 

life-history traits, such as annual fecundity, age of first reproduction, and longevity (i.e., traits 

that define the trajectory of individuals throughout their life). This results in a slow-fast 

continuum of life histories (33–36) that should match slow vs. fast aging rates (the Slow-Fast 

Continuum Hypothesis). For example, fast aging      expected to be correlated with a short 

reproductive lifespan      should evolve in a correlated manner with swift pace of life, and vice 

versa (33, 37). Therefore, existence of a strong positive co     variation among biological times 

(e.g., 38) predicts that the aging rate should co     vary with age of first reproduction (negatively) 

and with annual fecundity (positively) such that species that mature relatively early or that 

allocate relatively more energy to reproduction      display faster aging and shorter longevities 

(35, 39). 

 We apply comparative phylogenetic methods to tetrapod data to analyze ectotherm aging 

and longevity in the wild, to compare to endotherms, and to address      the following four 

hypotheses for the evolution of aging in ectotherms: i) Thermoregulatory Mode, ii) Temperature, 

iii) Protective Phenotypes, and iv) Slow-Fast Continuum. We analyze long-term      capture-

recapture data      collected in the wild from 107 populations of 77 species, with study length 

averaging 17 years (ranging from 4 to 60 years), to assess macroevolutionary patterns of 

mortality, aging and longevity in free-living amphibians and non-avian reptiles. We present the 



13 

first comprehensive comparative analysis of patterns of aging across these ectotherms, and 

analyze both the rate of aging (computed as the slope of the relative rate of increasing age-

specific mortality derived from the Gompertz model,      1) and longevity (computed as the 

number of years after the age of first reproduction at which 95% of individuals in a given adult 

cohort have died). Specifically, we test: i) whether ectotherms consistently age slower and live 

longer than endotherms;      ii) whether mean, minimum, or maximum environmental temperature 

experienced by a population co-varies with the rate of aging and longevity;      iii) whether 

species with protective phenotypes (either physical or chemical) age slower and live longer than 

those without physical or chemical protections;      and iv) whether the rate of aging and 

longevity strongly co-vary with other biological traits, such as age at first reproduction and 

annual fecundity. 

Aging in ectothermic tetrapods 

 All major ectothermic orders within 77 reptile      and amphibian species examined      

had at least one species with negligible aging (1 ~ 0; Fig 1, Data S1). Notably, turtles had slow 

rates of aging (mean 1 ± SE= 0.04 ± 0.01), with a small range relative to the number of species 

represented (-0.013 – 0.225 for 14 species; Fig 2, Table S1). Crocodilians, tuatara, and 

salamanders were similarly slow in aging (crocodilians: mean 1 = 0.14 ± 0.06, tuatara: 0.005, 

and salamanders: 0.18 ± 0.05) in comparison to squamates (mean 1 = 0.55 ± 0.14) and frogs 

(mean 1 ± SE = 0.41 ± 0.06; Fig 2, Table S1-S2, Data S1). Turtles and tuatara had      greater 

longevity (95% of adult lifespan) than most other ectothermic tetrapods, with mean longevities 

of 39 (± SE 6) and 137 years, respectively, compared to crocodilians (21 years ± 5), squamates 

(12 years ± 2), frogs (8 years ± 0.6), and salamanders (10 years ± 1; Table S1-S2, Data S1).  

Thermoregulatory Mode Hypothesis 
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Controlling for phylogeny and body size, across tetrapods, aging rate      and longevity      

did not differ between ectotherms and endotherms (Table 1, Fig 3, see Fig S1 for raw values by 

class). Ectotherms ranged above and below the known aging rates for endotherms (Cv= 1.40 for 

ectotherms and 1.15 for endotherms), and had the greatest longevities (Cv = 0.37 for ectotherms 

and 0.32 for endotherms; Fig S1). E     ctotherm variance in aging rate was significantly different 

from the endotherm variance (F106/118 = 5.49, p =< 0.001), although the variances in longevities 

were not different (F106/118 = 1.31, p = 0.16). There was a negative relationship between aging 

rate and longevity for both groups, with faster aging rates corresponding to shorter longevity, but 

the slope of the relationship was lower      in ectotherms than in endotherms (Table 1, Fig 3C). T     

he negative association between rate of aging and longevity varied considerably among 

mammals, birds, reptiles, and amphibians, when considered by taxonomic class (Fig S2; Table 

S3).  

Temperature Hypothesis  

 Within ectotherms, the      rate of aging increased with mean temperature in reptiles, but 

decreased with mean temperature in amphibians (Table 2, Fig S3). Models using minimum and 

maximum temperatures instead of mean showed the same patterns (Table S4).   

Protective Phenotypes Hypothesis 

We considered three categories of protection: physical (armor and shells), chemical 

(venom and skin toxins), and neither physical nor chemical (Fig S4). Within ectothermic 

tetrapods, species with physical or chemical protection aged slower than species with neither 

physical nor chemical protection (mean 1 ± SE: 0.05 ± 0.01, 0.29 ± 0.06, 0.47 ± 0.07, 

respectively). Species with physical protection lived longer than those with no protection and 
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those with chemical protection (mean years ± SD: 36 ± 5, 10 ± 3, 11 ± 1, respectively, Table S5, 

Data S1).  

Slow-fast Continuum Hypothesis 

 We examined relationships between      both the age of first reproduction and annual 

fecundity and      rate of aging and longevity. The rate of aging was negatively associated with 

the log age of first reproduction, and positively associated with the log annual fecundity (Table 

2). However, because class (i.e., reptiles or      amphibians     ) was      significant, we further 

investigated these trends per      class. We found that the pattern of a decreasing rate of aging 

with increasing age of first reproduction was driven by reptiles, whereas the increasing rate of 

aging with increasing annual fecundity was driven by amphibians (Table S6, Fig 4A-4B). 

Longevity was positively associated with the age of first reproduction, with similar magnitude in 

both amphibians and reptiles (Table 2, Fig. 4C). Longevity was not related to annual fecundity 

(Table 2, Fig 4D).  

Discussion  

We found greater variation in aging rates and longevity      in the wild across ectothermic 

tetrapods than in birds and mammals. Our comprehensive study also offers robust insight that the 

parameter space for aging rates and longevity      is much larger than previosuly thought, and that 

turtles, crocodilians, and salamanders have remarkably low aging rates and extended longevities 

for their size. Most turtles have physical protection (bony shells, which are external rib cages), as 

well as a relatively slow pace of life, which both contribute to the negligible mortality      and 

exceptional longevity. In addition, aging rates remained low overall, although      for at least one 

s     turtle (Chrysemys picta), age at maturation, longevity and aging rates varied      among 
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populations (8, 11, 12, this study). Future work that focuses on turtles with soft shells (versus 

rigid, as in this study) may      help disentangle causes of slow turtle aging. 

     Our analyses provide clear evidence that ectotherms have a remarkable diversity of 

aging rates and longevity     . Within ectotherms, rate of aging ranged from -0.013 to 2.0, 

corresponding to a continuum from negligible senescence to      very fast aging.  Ectotherm 

lifespan ranged from 1 year to 137 years. In comparison, the human      aging rate is about 0.1, 

with maximum longevity of 110 years (2). Within      Primates, aging rates range between     0.04 

– 0.5 (longevity: 4 – 84 years), and the overall m     ammalian rate of aging ranges from 0 to 1.2, 

with a      single high value observed in eastern moles (Scalopus aquaticus) representing       an 

outlier (Fig S1). One notable group of vertebrates missing from our comparisons      are fishes, 

which themselves have highly variable aging rates and longevities and contain species of great 

interest to aging biology (e.g., rock fish, B     igmouth buffalo, and short-lived poeciliids) (1, 34–

36). 

In addition to expanding the domain for aging research and gaining insights into 

ectotherm aging, we used      novel data to test four hypotheses on the evolution of aging in a 

comparative framework. Our test of the Thermoregulatory Mode Hypothesis revealed that      

across tetrapods, ectotherms did not have slower rates of aging (Adjusted R2 = 0.05, p = 0.26) or 

longer lifespans (Adjusted R2 = 0.20, p = 0.64) than similar-sized endotherms. However, 

thermoregulatory mode      appeared      to modulate the relationship between aging rate and 

longevity (when phylogenetically and body-mass controlled: Adjusted R2 = 0.38, Fig 3C). 

We found mixed support for the Temperature Hypothesis as it relates to rate of aging; 

mean temperature interacted with class such that the rate of aging increased with mean 

temperature in reptiles, but decreased with mean temperature in amphibians (Fig S3, Table 2). 
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Moreover, this      interaction corresponded to the same directionalities when we tested for a 

relationship with minimum or maximum temperature (Table S4). We found no associations 

between longevity and      mean, minimum, or maximum temperature. Because temperature is a 

proximate mediator of cellular and biochemical processes, it is also likely a driver of local 

adaptation among populations – and plasticity within individuals – for phenotypes related to 

aging and longevity (24, reviewed in 43). 

     Temperature increases ectotherm metabolic rate and putatively hastens accumulation 

of molecular damages via multiple processes, such as free radical production, telomere attrition, 

secretion of cytokines from senescent cells, and DNA damage (43). For example, in garter     

snakes (Thamnophis spp.) and frogs, thermal differences among populations have been 

hypothesized to be an agent of selection for life-history divergence, including aging (25, 44).     

Laboratory experiments that raise ectotherms under different thermal regimes can directly test 

for the proximate effect of temperature on aging (e.g., 45), and are necessary to tease apart how 

temperature might influence the evolution of aging. Also, global warming may be a       driver of      

longevity/aging in ectotherm     s. Because it is an ongoing effect      (IPCC, 2021) and       can      

accelerate rates of senescence in these organisms (Stark et al., 2020),      management and 

conservation strategies may      be even more necessary to avoid species extinction.    

Our analyses also provided clear evidence supporting the Protective Phenotypes 

Hypothesis within ectothermic tetrapods. Species with physically protective phenotypes, such as 

armor, spines, or shells, aged more slowly and lived much longer for their size than those 

without protective phenotypes (Table S5). Though species with chemical protection have greater 

longevity      than those without (29, 46), this is the first time a metric of senescence - rate of 

aging - has been linked to these protective phenotypes. This result may explain uniquely slow 
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rates of aging in turtles, coupled with extended longevity     . Salamanders also aged slowly 

relative to other tetrapod ectotherms. We were unable to include behaviors, such as fossorial 

lifestyles or seasonal activity, that may function as behavioral protections by reducing predation 

risk, with a consequence of low mortality rates. Moreover, many salamanders have regenerative 

capabilities that could contribute to slowing aging through greater damage repair efficiency (47, 

48).  

Lastly, we document that mortality aging is involved in shaping the slow-fast continuum 

of life histories. Both rates of aging and longevity      were associated with other biological traits 

in reptiles and amphibians. Earlier age at first reproduction in reptiles was correlated with faster 

aging rates (Table 2, Fig 4). A similar pattern has been documented in birds and mammals, 

where an earlier age at first reproduction corresponded to an earlier age at the onset of 

senescence (49, 50). Amphibian species with larger annual fecundities, and therefore greater 

annual reproductive allocation, had faster rates of aging, which has also been found in birds and 

mammals, and supports Hamilton’s original prediction (18). Earlier age of first reproduction was 

also associated with shorter longevity in both amphibians and reptiles (Fig 4). Heralded as a key 

component of the life-history portfolio (51, 52), this positive relationship between age at first 

reproduction and adult longevity is thus robust across tetrapod ectotherms as well. These results 

are congruent with patterns detected in endothermic vertebrates (3) and fit into an existing 

evolutionary framework of genetic correlations underlying relationships among life-history traits, 

including aging and longevity. Further work on the quantitative genetic and genomic bases of 

aging and longevity are necessary to test      whether the phenotypic associations are underlain by 

genetic correlations (25).  
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The evolution of aging rates and longevity have seemingly multiple determinants from 

the genetic architecture of life-history traits to morphological adaptations, yielding complex 

aging patterns across free-ranging tetrapods and, truly, the tree of life (1). Long-term studies of      

species from wild populations are necessary for understanding such complexity in the natural 

context in which aging evolved (53). O     ur comprehensive compilation of long-term field 

studies clarifies mechanisms underlying the evolution of aging rate in tetrapod vertebrates, 

highlighting links among protective phenotypes, life-history tactics, and aging variation in the 

wild. 
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Fig. 1. Tetrapod ectotherms and their measures of aging. The rate of aging is the      

Gompertz slope parameter indicating how mortality risk increases with age (in number of years 

since first reproduction)               . Longevity is the number of years from the age of first 

reproduction at which 95% of the individuals in a population have died. Error bars show +/-1 SD 

for species for which multiple populations were analyzed. Shading represents taxonomic orders. 
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The number next to the bar represents the number of populations included in this study. Figure 

was made with iTOL (54) and silhouettes are available on phylopic.org. 

 

Fig. 2. Measures of rates of aging and longevity across ectotherms. Letters denote statistical 

significance across orders after correcting for body mass and phylogeny (Table S2). Bars show 

+/- 1 SE. Points are uncorrected values for visualization. The rate of aging here is the mortality 

slope derived from a Gompertz model. Longevity is the number of years from the age of first 
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reproduction at which 95% of the individuals in a population have died. Green denotes reptiles 
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and purple denotes amphibians. 

 

 

 

 

 

      

 

 

 

 

 

 

Fig. 3. Comparison of 

ectothermic versus 

endothermic      tetrapods for 

(A) rates of aging, (B) 

longevity, and (C) the 

relationship between aging rate 

and longevity. Trend lines are 

derived from PGLS models. 

Orange denotes endotherms and 

blue denotes ectotherms. Black 
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lines in A and B show the overall effect (no difference between endotherms and ectotherms). See 

Table 1 for P-values of these interactions. 
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Fig 4. Slow-fast Continuum Hypothesis. Solid lines show statistically significant relationships 

between variables and are derived from PGLSs from Table 2. Dashed lines are included for 

visualizing the contrasting class. Green denotes reptiles and purple denotes amphibians. The 

black line in C denotes the overall effect (no difference between reptiles and amphibians).      

Age at first reproduction and annual fecundity themselves did not differ by class (when 

controlling for phylogeny and body mass; Table S7).
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Table 1. Statistical output for PGLSs and phylogenetic ANCOVAs comparing ectotherms 

and endotherms for the Thermoregulatory Mode Hypothesis. Group is a factor with two 

levels: ectotherms vs. endotherms. Interaction (bold) terms denote group differences after 

correcting for body mass plotted in Fig 3. These were not significant for rate of aging or 

longevity (see Fig 3).  

Model Df Sum Sq Mean Sq 
F 

value 
Est 

P-

value 

Ectotherms vs Endotherms       

  Rate of aging (Adj R2 =0.06)       

     Group 1 0.01 0.01 0.001 -0.39 0.76 

     Log mass 1 129.00 129.00 14.46 -0.08 <0.001 

     Log mass × group 1 16.44 16.44 1.84 0.04 0.18 

     Residuals 222 1979.85 8.92    

  Log longevity (Adj R2 =0.20)       

     Group 1 1.96 1.96 0.08 -0.30 0.89 

     Log mass 1 1479.83 1479.83 59.16 0.22 <0.001 

     Log mass × group 1 6.83 6.83 0.27 -0.03 0.60 

     Residuals 222 5620.40 25.32    

 Log longevity (Adj R2 =0.37)       

     Rate of aging 1 1787.63 1787.63 90.24 -0.87 <0.001 

     Group 1 2.23 2.23 0.11 -0.63 0.74 

     Log mass 1 851.72 851.72 42.99 0.17 <0.001 

     Rate of aging × group 1 107.47 107.47 5.43 0.56 0.02 

     Residuals  221 4378.00 19.81    
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Table 2. Statistical output for ectotherm PGLSs showing output of all predictor variables 

for the Temperature, Protective Phenotypes, and Slow-fast Continuum Hypotheses. 

Protection is a factor with three levels: none, chemical, and physical. Class is a factor with two 

levels: reptile and amphibian. Bold P-values correspond to tests of the specific hypothesis in 

question. 

PGLS Model Df 
Sum 

Sq 

Mean 

Sq 

F 

value 
Est 

P-

value 

Temperature Hypothesis 

Rate of aging (Adj R2 = 0.06,  = 0) 
      

   Class 1 0.01 0.01 0.05 -0.28 0.18 

   Mean temp 1 0.003 0.003 0.002 -0.002 0.08 

   Class × mean temp 1 1.05 1.05 5.56 0.004 0.02 

   Log mass 1 1.01 1.01 5.39 -0.07 0.003 

   Residuals 102 18.54 0.20    

Log longevity (Adj R2 = 0.15,  = 0.67) 
      

   Class 1 0.72 0.72 0.66 0.42 0.71 

   Mean temp 1 1.23 1.23 1.12 -0.001 0.51 

   Class × mean temp 1 0.18 0.18 0.17 -0.001 0.66 

   Log mass 1 22.34 22.34 20.41 0.18 <0.001 

   Residuals 102 109.44 1.07    

Protective Phenotypes Hypothesis 

 Rate of aging (Adj R2 = 0.11,  = 0) 
      

   Protection  2 2.79 1.40 7.85 ------ <0.001 

   Log mass 1 0.13 0.13 0.75 0.02 0.39 

   Residuals 103 18.34 0.18    

 Log longevity (Adj R2 = 0.44,  = 0) 
      

   Protection  2 35.25 17.62 42.15 ------ <0.001 

   Log mass 1 1.25 1.25 3.00 0.06 0.09 

   Residuals 103 43.06 0.42    
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Slow-fast Continuum Hypothesis 

 Rate of aging (Adj R2 = 0.18,  = 0) 
      

   Log age at repro 1 1.08 1.08 6.48 -0.26 0.01 

   Log annual fecundity 1 0.39 0.39 2.34 0.07 0.04 

   Class  1 0.28 0.28 1.71 0.46 0.02 

   Log mass 1 2.78 2.78 16.73 -0.03 0.41 

   Residuals 99 16.44 0.17    

 Log longevity (Adj R2 = 0.52,  = 0) 
      

   Log age at repro 1 9.75 9.75 26.34 0.77 <0.001 

   Log annual fecundity 1 8.89 8.89 24.00 -0.06 0.22 

   Class 1 4.20 4.20 11.34 -0.06 0.85 

   Log mass 1 19.38 19.38 52.32 0.05 0.32 

   Residuals 99 36.66 0.37    
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Captions for Data S1  

 

Other Supplementary Materials for this manuscript include the following:  

Data S1  

Materials and Methods 

To test the Thermoregulatory Mode, Temperature, Protective Phenotypes, and Slow-Fast 

Continuum Hypotheses, we used the rate of aging (Gompertz slope parameter) and longevity 

(number of years after age of first reproduction at which 95% of the individuals in the adult 

population have died) of ectothermic tetrapods from long-term capture-recapture datasets for 

wild populations of amphibians and reptiles around the world, in addition to population-level 

temperature data and species-level trait data. For the Thermoregulatory Mode Hypothesis, and to 

compare endotherms and ectotherms in general, aging rates and longevities for mammals and 

birds were obtained from published datasets. We then used a supertree and phylogenetic 

generalized least squares regression (PGLS) models to test the above hypotheses of aging in a 

phylogenetic framework.  

Ectotherm datasets 

We gathered long-term amphibian and reptile datasets from around the world (Fig S5; 

Data S1) to compare aging rates and longevities in ectotherms. These datasets represent 77 

species from 107 populations on six      continents (all continents on which tetrapod ectotherms 

naturally occur). Encounter histories were assembled from the capture data and when animals 

were of known age, the year of birth was included in the dataset. In some cases, data were 

collected from multiple adjacent populations. We combined data when similar capture effort 

occurred at all locations over the same time span. If not, we only included data from the 

population with highest capture rates. For all datasets, we analyzed adult aging rate beginning at 

age of maturation, and adult longevity (i.e., 95% longevity minus the age of first reproduction). 

Finally, while some datasets included accurate information about sex for all individuals, the 

majority did not have this information for all individuals because of challenges in determining 

sex from external characteristics of juveniles and adults, in some cases. Therefore, our analyses 

do not consider sex-specific differences and instead should be considered an average rate of 

aging for both males and females.  

Endotherm datasets 

 We collated mammal datasets from Lemaître et al. (55). The Lemaître et al. data were 

split into males and females so we used female-only estimates because the quality of data was 

usually better for females, and because averaging the male and female rates is not equivalent to a 

pooled analysis (such as was done with the ectotherms). We used a subset of these data that 

could be reasonably fit using the same type of model we used (i.e., Gompertz), to allow for direct 

comparisons of aging rates. Thus, we      discarded mammalian datasets in which age-specific 

mortality started substantially later than age of first reproduction, which requires more complex 

models than the Gompertz to be fitted reliably. Human body mass was obtained from Walpole et 

al. (56). We also collated avian life tables from the literature (see Data S1 for sources) and fit 

Gompertz models to the data, or used parameters provided directly by researchers.  

Rate of aging and longevity calculations 

Datasets were analyzed using the ‘basta’ function from the BaSTA package for R (57). We 

estimated the rate of aging starting at the age of maturity and going forward using a Gompertz 

function (58): 
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𝑢 = 𝑒𝛽0+ 𝛽1∗𝛼𝑖𝑡  
 

We chose this model because of its limited parameters; our wild, long-term datasets of often 

elusive species were sometimes too sparse to fit a model with many parameters and we wanted to 

facilitate comparison across as many species as possible. The age at first reproduction for each 

species was obtained from the literature (Data S1) and was used to determine when to start fitting 

the Gompertz curve. In cases where juvenile data were excluded, we set the function to estimate 

the relationship from age 0, since animals did not enter the sampled population until they became 

adults. Gompertz curves were fit to species-specific estimates for each dataset and fit was 

visually inspected (Fig S6). We also examined outputs from each dataset to determine that 

estimates from multiple chains converged. In some cases, primarily where datasets were small 

and recaptures infrequent, the ‘basta’ function returned extreme estimates. If convergence among 

chains or estimates could not be recovered, we re-ran analyses with longer burn-in and iteration 

periods.  

Temperature data for Temperature Hypothesis 

 The approximate coordinates of each study population (Data S1) were used to extract the 

mean annual temperature, the maximum temperature of the warmest month, and the minimum 

temperature of the coldest month from the WorldClim database (59). Because      it was not 

feasible to obtain the mean temperature of the active season for each species, we assessed all 

three temperature estimates to determine if any had a significant impact on rate of aging and 

longevity.  

Species-level traits for the Protective Phenotypes and Slow-fast Continuum Hypotheses 

 The presence of protective phenotypes, such as venom, skin toxins, shells, armor, or 

spines, was obtained from the literature and were classified as physical, chemical, or neither for 

analyses. Though there is some ambiguity about chemical protection within some amphibian 

groups, we deferred to previously published datasets (see Data S1 for sources). Body mass and 

annual fecundities from the population were included when available, or species estimates were 

obtained from meta-analyses (Data S1). 

Phylogenetic tree 

 We created a supertree from recently published phylogenies of amphibians, squamates, 

turtles, crocodilians, mammals, and birds (60–65) following the topology of a recent molecular 

phylogeny (66). Consensus trees for each group were constructed from a Bayesian posterior 

distribution of 10,000 trees when available and these trees were then combined into a supertree 

without branch lengths (Fig S7). Branch lengths were estimated for the supertree using the 

Grafen transformation (67) in the ape package for R (68). To account for multiple datasets within 

a species, we added short polytomous branches. 

Phylogenetic comparative methods 

 We created PGLS models in the R package caper (69) to assess ectotherm aging in 

general and to test our hypotheses on rate of aging (Gompertz slope parameter, ß1) and longevity 

(elapsed years of the adult lifespan, after the first reproduction, at which 95% of adults have 

died).  

To compare orders within ectotherms (i.e., turtles, squamates, tuatara, crocodilians, 

salamanders, frogs), we first performed a PGLS and then used the multcomp package (70) to 

perform a Tukey’s multiple comparison of means (Table S1) because the phylogenetic signal 

(lambda) was near 0 (<0.001). To compare ectotherms and endotherms for the Thermoregulatory 

Mode Hypothesis, we performed a phylogenetic ANCOVA with log body mass, group, and the 
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interaction between log body mass and group (i.e., ectotherm or endotherm) to assess whether 

the groups differed (Table 1). We did this separately for each aging measure. We also performed 

a PGLS each for reptiles, amphibians, birds, and mammals as described above. To see if the 

relationship between aging measures differed between these groups, we performed a PGLS with 

longevity (log-transformed), group, log body mass, and their interaction as predictors (Figure 

S2). Because the      phylogenetic signal was 0, we again used Tukey’s multiple comparison 

(Table S3).  

To test the Temperature Hypothesis within ectotherms, we ran PGLSs for each predictor 

variable (Gompertz slope and longevity) and included class (reptiles or amphibians) as a binary 

variable, log body mass, temperature at the population site, and a class by temperature 

interaction. The interaction term was included because it is possible that temperature influences 

reptiles and amphibians differently.  

To test the Protective Phenotypes Hypothesis, protection (physical/chemical/none) was 

the predictor for another set of PGLSs, with log body mass as a covariate. To examine the 

relationships between age of first reproduction and annual fecundity and the aging estimates 

(Gompertz slope and longevity) to the test the Slow-Fast Continuum, we used class (reptiles or      
amphibians), log body mass, and the interaction between log body mass and class as predictors. 

For each case, we ran two separate PGLSs with rate of aging or longevity as the response 

variable. In any PGLS, if class, or interactions with class, was found to be significantly related to 

the response variable, we split the analyses by class for further investigation. 

Longevity was log-scaled in order to obtain residual normality and homogeneity, and to 

match the allometric nature of its association with log body mass. All assumptions were met for 

all models. These assumptions were tested using functions from the car package (71).      Lambda 

was optimized with maximum likelihood for all models because branch lengths were estimated; 

this allows the phylogenetic signal to be estimated by transforming branch lengths.      Complete 

outputs for all PGLSs can be found in Tables 1, 2, S2, and S6.  

 

Supplementary Text 

Species-level trait data collection 

The age at maturity for each species was obtained from the literature (Data S1) and was 

used to determine when to start fitting the Gompertz curve. There is a lot of variation because      
age at first reproduction in many reptiles and amphibians is better estimated by size than age. If a 

range was given, the median age was used, and if males and females differed, the one with the 

higher age at maturity was used. For amphibians, where age of maturity often corresponds to 

metamorphosis from a larval aquatic stage to a terrestrial or semi-aquatic reproductive stage, we 

treated each dataset on a case-by-case basis. Amphibian datasets with no juveniles had a 

truncation age of 0, but this corresponds to the age of metamorphosis. For some species for 

which species-level data were not available, we used conspecific members of the same genus       
(all sources can be found in Data S1). 

Clutch size and clutches per year were obtained from meta-analyses, such as Allen et al. 

(72), when possible, and from species-specific papers when necessary. These values were 

multiplied to obtain annual fecundity values. The number of c     lutches per year was not 

available for most amphibian species. In amphibians, annual breeding probability may vary 

among populations of the same species (73, 74) and over time within a population (75). As this 

information is lacking in most amphibian populations, we assumed that females produce one egg 
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clutch per year with constant size, an assumption that has been previously made in demographic 

models for amphibians (see for instance 72 for frogs and salamanders). 
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Fig. S1. 

Distribution of rates of aging and longevities in amphibians, reptiles, birds, and mammals. 

The rate of aging here is the mortality slope derived from a Gompertz model. Longevity is the 

years since age at first reproduction at which 95% of the individuals in a population have died. 

The data are not mass or phylogeny-corrected. Symbols correspond with those in other figures.  
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Fig. S2. 

Relationship between rate of aging and longevity for amphibians, reptiles, mammals, and 

birds. Regression lines result from the PGLS models and are corrected for phylogeny and body 

mass. Symbols used here are the same as in other figures. 
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Fig. S3. 

Relationship between mean annual temperature and rate of aging. There was a near 

significant negative trend in mean temperature and rate of aging, measured as the Gompertz 

mortality slope (p=0.08, Table 2), with a significant class by temperature interaction. Regression 

lines are derived from the PGLS model in Table 2 for the significant class by temperature 

interaction. Symbols and colors used here are the same as in other figures, with green 

representing reptiles and purple representing amphibians.  
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Fig. S4. 

Measures of rate of aging and longevity by protective phenotypes. Species with physical 

protective phenotypes, such as shells or armor, have slower rates of aging and longer longevities 

than those without.  Points are colored as in other figures, with green representing reptiles and 

purple representing amphibians.  
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Fig S5.  
Distribution map of datasets. Green dots represent reptile datasets and purple dots represent 

amphibian datasets. The authors recognize the Western bias inherent in this collection of datasets 

and want to stress this bias as a reminder of the systemic issues with science and science funding 

that lead to many areas being under-utilized or under-represented in long-term research. 
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Fig S6. 

Fit of model estimates and Gompertz curves for each dataset. All axes are the same (years 

after first reproduction on the X, mortality on the Y). Shaded areas represent the 95% credible 

intervals, with green representing reptile species and purple representing amphibian species.  
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Fig S7. 

Supertree of all endothermic and ectothermic species included in this analysis. Branch 

lengths are not scaled. The red in the inner circle represents endotherms and blue represents 

ectotherms, as throughout the paper. Green bars are longevity estimates and orange bars are the 

aging rates. Silhouettes from Phylopic.org.  
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Table S1. Descriptive summary of ectotherm aging parameters used in this study by group. Note that values are not corrected for 

body mass or phylogeny. See Data S1 for species-specific values.  

 # of 

Species 

# of 

Datasets 

Average Rate 

of Aging (SE) 

SD Rate of 

Aging 

Rate of Aging 

Range 

Average 

Longevity 

(SE) 

SD 

Longevity 

Range 

Longevity 

Amphibians 38 62 0.33 (0.05) 0.36  8.99 (0.60) 4.72  

Frogs 23 39 0.41 (0.06) 0.40 -0.10 – 1.31 8.17 (0.62) 3.85 1.7 – 18.2 

Salamanders 15 23 0.18 (0.05) 0.23 -0.14 - 0.65 10.37 (1.20) 5.74 2.3 – 22.6 

Reptiles 39 45 0.31 (0.08) 0.55  26.19 (4.16) 27.90  

Crocodilians 3 3 0.14 (0.06) 0.10 0.04 - 0.24 20.5 (4.96) 8.59 12.7 – 29.7 

Squamates 21 23 0.55 (0.14) 0.69 -0.20 - 2.12 12.06 (2.44) 11.72 1.7 – 45.1 

Turtles 14 18 0.04 (0.01) 0.06 -0.01 – 0.23 39.04 (6.04) 25.64 10.5 – 108.5 

Tuatara 1 1 0.005 ---- ---- 136.8 ---- ---- 
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Table S2.  

Estimates of Tukey’s post-hoc pair-wise comparison of differences in rates of aging and mean log(longevity) among ectotherm 

orders, controlling for body size and phylogeny. Bolded estimates had p-values < 0.05. Standard errors are in parentheses. Rate of 

aging (1) is the response variable above the diagonal and longevity (on a log scale) is the response variable below the diagonal. 

 Frogs Crocodilians Squamates Tuatara Turtles Salamanders 

Frogs   -0.03 (0.32) 0.17 (0.11) -0.31 (0.43)  -0.26 (0.15) -0.28 (0.11) 

Crocodilians -0.11 (0.46)  0.20 (0.31) -0.28 (0.50) -0.23 (0.28) 0.25 (0.35) 

Squamates 0.01 (0.16) 0.12 (0.45)  -0.48 (0.43) -0.43 (0.15) -0.44 (0.14) 

Tuatara 2.51 (0.62) 2.62 (0.72) 2.50 (0.62)  0.05 (0.43) 0.03 (0.44) 

Turtles 0.99 (0.22) 1.09 (0.41) 0.97 (0.22) -1.52 (0.62)  -0.02 (0.18) 

Salamanders 0.40 (0.17) 0.50 (0.50) 0.38 (0.20) -2.11 (0.64) -0.59 (0.27)  
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Table S3. Estimates of Tukey’s post-hoc pair-wise comparison of differences in mean rates 

of aging and longevity (on a log scale) among tetrapod classes, controlling for body size. 

Bolded estimates had significant p-values. Standard errors are in parentheses.  

 Amphibians Reptiles Birds 

Reptiles      0.21 (0.18)   

Birds -0.92 (0.19) 1.13 (0.17)  

Mammals -0.51 (0.19) 0.72 (0.17) 0.41 (0.18) 
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Table S4. Statistical output for ectotherm PGLSs showing output of all predictor variables 

for the Temperature Hypotheses, using maximum temperature of the warmest month and 

minimum temperature of the coldest month. Class is a factor with two levels: reptile and 

amphibian.  

PGLS Model Df 
Sum 

Sq 

Mean 

Sq 

F 

value 
Est 

P-

value 

Maximum Temperature       

Rate of aging (Adj R2 = 0.05, =0.30)       
   Class 1 0.01 0.01 0.01 -1.10 0.09 
   Max temp 1 0.64 0.64 2.73 -0.0002 0.88 
   Class × max temp 1 1.01 1.01 4.32 0.004 0.04 
   Log mass 1 0.66 0.66 2.83 -0.05 0.05 
   Residuals 102 23.95 0.23    

Log longevity (Adj R2 = 0.19, =0.74)       

   Class 1 0.69 0.69 0.55 0.97 0.51 

   Max temp 1 8.98 8.98 7.12 -0.002 0.14 

   Class × max temp 1 0.67 0.67 0.53 -0.002 0.47 

   Log mass 1 26.43 26.43 20.96 0.18 <0.001 

   Residuals 102 126.56 1.24    

Minimum Temperature       

Rate of aging (Adj R2 = 0.05, =0)       

   Class 1 0.009 0.009 0.04 0.19 0.10 

   Min temp 1 0.002 0.002 0.01 -0.001 0.17 

   Class × min temp 1 0.72 0.72 3.79 0.002 0.05 

   Log mass 1 1.01 1.01 5.30 -0.06 0.007 

   Residuals 102 19.51 0.19    

Log longevity (Adj R2 = 0.13, =0.59)       

   Class 1 0.77 0.77 0.81 0.19 0.85 

   Min temp 1 0.01 0.01 0.01 0.0002 0.87 

   Class × min temp 1 0.33 0.33 0.35 -0.001 0.55 

   Log mass 1 17.47 17.47 18.51 0.18 <0.001 

   Residuals 102      
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Table S5.  

Estimates of Tukey’s post-hoc pair-wise comparison of means with protection as the 

predictor. Bolded estimates had significant p-values < 0.05. Standard errors are in parentheses. 

Rate of aging (1) is the response variable above the diagonal and longevity (on a log scale) is 

the response variable below the diagonal. 

 

 None Chemical Physical 

None  0.25 (0.10) -0.57 (0.16) 

Chemical -0.33 (0.16)  -0.32 (0.15) 

Physical 1.21 (0.25) 0.88 (0.24)  
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Table S6. Statistical output for PGLSs split by class (reptiles and amphibians) to test the Slow-

fast Continuum Hypothesis. Classes were split when class was found to be a significant 

predictor. P-values <0.05 are bolded.  

 

Reptiles Df Sum Sq Mean Sq 
F 

value 
Est 

P-

value 

  Rate of aging (Adj R2 =0.18)       

     Log age of repro 1 2.32 2.32 4.23 -0.31 0.05 

     Log annual fecundity 1 0.02 0.02 0.04 0.03 0.78 

     Log mass 1 4.77 4.77 8.70 -0.005 0.92 

     Residuals 41 22.50 0.55    

Amphibians       

  Rate of aging (Adj R2 =0.26)       

     Log age of repro 1 0.66 0.66 1.53 -0.19 0.22 

     Log annual fecundity 1 3.16 3.16 7.37 0.10 0.01 

     Log mass 1 1.75 1.75 4.08 -0.08 0.18 

     Residuals 55 23.61 0.43    

 

Table S7.  Statistical output of PGLSs to test if annual fecundity and age at first 

reproduction vary by class (reptiles or amphibians) before testing the Slow-Fast 

Continuum Hypothesis 

 Df Sum Sq Mean Sq 
F 

value 
Est 

P-

value 

Age at First 

Reproduction   

(Adj R2 =0.28, =0.57) 

      

     Class 1 19.87 19.87 2.77 1.54 0.55 

     Log mass 1 281.64 281.64 39.25 0.69 <0.001 

     Residuals 103 739.11 7.18    

Annual Fecundity   

(Adj R2 =0.04, =0.99) 
      

    Class 1 1620041 1620041 0.06 -2313.10 0.72 

     Log mass 1 190491480 190491480 6.69 179.64 0.01 

     Residuals 101 2874266507 28458084    
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Data S1. (separate file) 

A summary of all datasets including species and population-level traits used in the analyses, their 

sources, and the rate of aging and longevity calculated in this paper.  

 
 
 


