108 research outputs found

    Zinc phosphate protects tomato plants against Pseudomonas syringae pv. tomato

    Get PDF
    AbstractThe purpose of this study was to determine whether zinc phosphate treatments of tomato plants (Solanum lycopersicum L.) can attenuate bacterial speck disease severity through reduction of Pseudomonas syringae pv. tomato (Pst) growth in planta and induce morphological and biochemical plant defence responses. Tomato plants were treated with 10 ppm (25.90 µM) zinc phosphate and then spray inoculated with strain DAPP-PG 215, race 0 of Pst. Disease symptoms were recorded as chlorosis and/or necrosis per leaf (%) and as numbers of necrotic spots. Soil treatments with zinc phosphate protected susceptible tomato plants against Pst, with reductions in both disease severity and pathogen growth in planta. The reduction of Pst growth in planta combined with significantly higher zinc levels in zinc-phosphate-treated plants indicated direct antimicrobial toxicity of this microelement, as also confirmed by in vitro assays. Morphological (i.e. callose apposition) and biochemical (i.e., expression of salicylic-acid-dependent pathogenesis-related protein PR1b1 gene) defence responses were induced by the zinc phosphate treatment, as demonstrated by histochemical and qPCR analyses, respectively. In conclusion, soil treatments with zinc phosphate can protect tomato plants against Pst attacks through direct antimicrobial activity and induction of morphological and biochemical plant defence responses

    Physiological, epigenetic and genetic regulation in some olive cultivars under salt stress

    Get PDF
    Abstract Cultivated olive, a typical fruit crop species of the semi-arid regions, could successfully face the new scenarios driven by the climate change through the selection of tolerant varieties to salt and drought stresses. In the present work, multidisciplinary approaches, including physiological, epigenetic and genetic studies, have been applied to clarify the salt tolerance mechanisms in olive. Four varieties (Koroneiki, Royal de Cazorla, Arbequina and Picual) and a related form (O. europaea subsp. cuspidata) were grown in a hydroponic system under different salt concentrations from zero to 200 mM. In order to verify the plant response under salt stress, photosynthesis, gas exchange and relative water content were measured at different time points, whereas chlorophyll and leaf concentration of Na+, K+ and Ca2+ ions, were quantified at 43 and 60 days after treatment, when stress symptoms became prominent. Methylation sensitive amplification polymorphism (MSAP) technique was used to assess the effects of salt stress on plant DNA methylation. Several fragments resulted differentially methylated among genotypes, treatments and time points. Real time quantitative PCR (RT-qPCR) analysis revealed significant expression changes related to plant response to salinity. Four genes (OePIP1.1, OePetD, OePI4Kg4 and OeXyla) were identified, as well as multiple retrotransposon elements usually targeted by methylation under stress conditions

    Effect of Metal Ions, Chemical Agents and Organic Compounds on Lignocellulolytic Enzymes Activities

    Get PDF
    Lignocellulolytic enzymes have been extensively studied due to their potential for industrial applications such as food, textile, pharmaceutical, paper, and, more recently, energy. The influence of metal ions, chemical agents, and organic compounds on these enzyme activities are addressed in this chapter, based on data available in the scientific literature

    Soil selenium (Se) biofortification changes the physiological, biochemical and epigenetic responses to water stress in Zea mays L. by inducing a higher drought tolerance

    Get PDF
    Requiring water and minerals to grow and to develop its organs, Maize (Zea mays L.) production and distribution is highly rainfall-dependent. Current global climatic changes reveal irregular rainfall patterns and this could represent for maize a stressing condition resulting in yield and productivity loss around the world. It is well known that low water availability leads the plant to adopt a number of metabolic alterations to overcome stress or reduce its effects. In this regard, selenium (Se), a trace element, can help reduce water damage caused by the overproduction of reactive oxygen species (ROS). Here we report the effects of exogenous Se supply on physiological and biochemical processes that may influence yield and quality of maize under drought stress conditions. Plants were grown in soil fertilized by adding 150 mg of Se (sodium selenite). We verified the effects of drought stress and Se treatment. Selenium biofortification proved more beneficial for maize plants when supplied at higher Se concentrations. The increase in proline, K concentrations and nitrogen metabolism in aerial parts of plants grown in Se-rich substrates, seems to prove that Se-biofortification increased plant resistance to water shortage conditions. Moreover, the increase of SeMeSeCys and SeCys2 forms in roots and aerial parts of Se-treated plants suggest resistance strategies to Se similar to those existing in Se-hyperaccumulator species. In addition, epigenetic changes in DNA methylation due to water stress and Se treatment were also investigated using methylation sensitive amplified polymorphism (MSAP). Results suggest that Se may be an activator of particular classes of genes that are involved in tolerance to abiotic stresses. In particular, PSY (phytoene synthase) gene, essential for maintaining leaf carotenoid contents, SDH (sorbitol dehydrogenase), whose activity regulates the level of important osmolytes during drought stress and ADH (alcohol dehydrogenase), whose activity plays a central role in biochemical adaptation to environmental stress. In conclusion, Se-biofortification could help maize plants to cope with drought stress conditions, by inducing a higher drought tolerance

    Road traffic pollution and childhood leukemia: a nationwide case-control study in Italy

    Get PDF
    Background The association of childhood leukemia with traffic pollution was considered in a number of studies from 1989 onwards, with results not entirely consistent and little information regarding subtypes. Aim of the study We used the data of the Italian SETIL case-control on childhood leukemia to explore the risk by leukemia subtypes associated to exposure to vehicular traffic. Methods We included in the analyses 648 cases of childhood leukemia (565 Acute lymphoblastic–ALL and 80 Acute non lymphoblastic-AnLL) and 980 controls. Information on traffic exposure was collected from questionnaire interviews and from the geocoding of house addresses, for all periods of life of the children. Results We observed an increase in risk for AnLL, and at a lower extent for ALL, with indicators of exposure to traffic pollutants. In particular, the risk was associated to the report of closeness of the house to traffic lights and to the passage of trucks (OR: 1.76; 95% CI 1.03–3.01 for ALL and 6.35; 95% CI 2.59–15.6 for AnLL). The association was shown also in the analyses limited to AML and in the stratified analyses and in respect to the house in different period of life. Conclusions Results from the SETIL study provide some support to the association of traffic related exposure and risk for AnLL, but at a lesser extent for ALL. Our conclusion highlights the need for leukemia type specific analyses in future studies. Results support the need of controlling exposure from traffic pollution, even if knowledge is not complete

    Chronic constipation diagnosis and treatment evaluation: The "CHRO.CO.DI.T.E." study

    Get PDF
    Background: According to Rome criteria, chronic constipation (CC) includes functional constipation (FC) and irritable bowel syndrome with constipation (IBS-C). Some patients do not meet these criteria (No Rome Constipation, NRC). The aim of the study was is to evaluate the various clinical presentation and management of FC, IBS-C and NRC in Italy. Methods: During a 2-month period, 52 Italian gastroenterologists recorded clinical data of FC, IBS-C and NRC patients, using Bristol scale, PAC-SYM and PAC-QoL questionnaires. In addition, gastroenterologists were also asked to record whether the patients were clinically assessed for CC for the first time or were in follow up. Diagnostic tests and prescribed therapies were also recorded. Results: Eight hundred seventy-eight consecutive CC patients (706 F) were enrolled (FC 62.5%, IBS-C 31.3%, NRC 6.2%). PAC-SYM and PAC-QoL scores were higher in IBS-C than in FC and NRC. 49.5% were at their first gastroenterological evaluation for CC. In 48.5% CC duration was longer than 10 years. A specialist consultation was requested in 31.6%, more frequently in IBS-C than in NRC. Digital rectal examination was performed in only 56.4%. Diagnostic tests were prescribed to 80.0%. Faecal calprotectin, thyroid tests, celiac serology, breath tests were more frequently suggested in IBS-C and anorectal manometry in FC. More than 90% had at least one treatment suggested on chronic constipation, most frequently dietary changes, macrogol and fibers. Antispasmodics and psychotherapy were more frequently prescribed in IBS-C, prucalopride and pelvic floor rehabilitation in FC. Conclusions: Patients with IBS-C reported more severe symptoms and worse quality of life than FC and NRC. Digital rectal examination was often not performed but at least one diagnostic test was prescribed to most patients. Colonoscopy and blood tests were the "first line" diagnostic tools. Macrogol was the most prescribed laxative, and prucalopride and pelvic floor rehabilitation represented a "second line" approach. Diagnostic tests and prescribed therapies increased by increasing CC severity
    • …
    corecore