21 research outputs found

    Agresividad Canina legislación, deberes y ética

    Get PDF
    Treball presentat a l'assignatura de Deontologia i Veterinària Legal (21223

    Lateral position during severe mono-lateral pneumonia: an experimental study

    Get PDF
    Patients with mono-lateral pneumonia and severe respiratory failure can be positioned in lateral decubitus, with the healthy lung dependent, to improve ventilation-perfusion coupling. Oxygenation response to this manoeuvre is heterogeneous and derecruitment of dependent lung has not been elucidated. Nine pigs (32.2 ± 1.2 kg) were sedated and mechanically ventilated. Mono-lateral right-sided pneumonia was induced with intrabronchial challenge of Pseudomonas aeruginosa. After 24 h, lungs were recruited and the animals were randomly positioned on right or left side. After 3 h of lateral positioning, the animals were placed supine; another recruitment manoeuvre was performed, and the effects of contralateral decubitus were assessed. Primary outcome was lung ultrasound score (LUS) of the dependent lung after 3-h lateral positioning. LUS of the left non-infected lung worsened while positioned in left-lateral position (from 1.33 ± 1.73 at baseline to 6.78 ± 4.49; p = 0.005). LUS of the right-infected lung improved when placed upward (9.22 ± 2.73 to 6.67 ± 3.24; p = 0.09), but worsened in right-lateral position (7.78 ± 2.86 to 13.33 ± 3.08; p < 0.001). PaO2/FiO2 improved in the left-lateral position (p = 0.005). In an animal model of right-lung pneumonia, left-lateral decubitus improved oxygenation, but collapsed the healthy lung. Right-lateral orientation further collapsed the diseased lung. Our data raise potential clinical concerns for the use of lateral position in mono-lateral pneumonia

    Hyperperfusion profiles after recanalization differentially associate with outcomes in a rat ischemic stroke model

    Get PDF
    Futile recanalization hampers prognoses of ischemic stroke after successful mechanical thrombectomy, hypothetically through post-recanalization perfusion deficits, onset-to-groin delays and sex effects. Clinically, acute multiparametric imaging studies remain challenging. We assessed possible relationships between these factors and disease outcome after experimental cerebral ischemia-reperfusion, using translational MRI, behavioral testing and multi-model inference analyses. Male and female rats (N = 60) were subjected to 45-/90-min filament-induced transient middle cerebral artery occlusion. Diffusion, T2- and perfusion-weighted MRI at occlusion, 0.5 h and four days after recanalization, enabled tracking of tissue fate, and relative regional cerebral blood flow (rrCBF) and -volume (rrCBV). Lesion areas were parcellated into core, salvageable tissue and delayed injury, verified by histology. Recanalization resulted in acute-to-subacute lesion volume reductions, most apparently in females (n = 19). Hyperacute normo-to-hyperperfusion in the post-ischemic lesion augmented towards day four, particularly in males (n = 23). Tissue suffering delayed injury contained higher ratios of hypoperfused voxels early after recanalization. Regressed against acute-to-subacute lesion volume change, increased rrCBF associated with lesion growth, but increased rrCBV with lesion reduction. Similar relationships were detected for behavioral outcome. Post-ischemic hyperperfusion may develop differentially in males and females, and can be beneficial or detrimental to disease outcome, depending on which perfusion parameter is used as explanatory variable.</p

    Linking In Vitro Models of Endothelial Dysfunction with Cell Senescence

    Get PDF
    Disfunció endotelial; Envellliment cel·lularDisfunción endotelial; Envejecimiento celularEndothelial dysfunction; SenescenceEndothelial cell dysfunction is the principal cause of several cardiovascular diseases that are increasing in prevalence, healthcare costs, and mortality. Developing a standardized, representative in vitro model of endothelial cell dysfunction is fundamental to a greater understanding of the pathophysiology, and to aiding the development of novel pharmacological therapies. We subjected human umbilical vein endothelial cells (HUVECs) to different periods of nutrient deprivation or increasing doses of H2O2 to represent starvation or elevated oxidative stress, respectively, to investigate changes in cellular function. Both in vitro cellular models of endothelial cell dysfunction-associated senescence developed in this study, starvation and oxidative stress, were validated by markers of cellular senescence (increase in β-galactosidase activity, and changes in senescence gene markers SIRT1 and P21) and endothelial dysfunction as denoted by reductions in angiogenic and migratory capabilities. HUVECs showed a significant H2O2 concentration-dependent reduction in cell viability (p < 0.0001), and a significant increase in oxidative stress (p < 0.0001). Furthermore, HUVECs subjected to 96 h of starvation, or exposed to concentrations of H2O2 of 400 to 1000 μM resulted in impaired angiogenic and migratory potentials. These models will enable improved physiological studies of endothelial cell dysfunction, and the rapid testing of cellular efficacy and toxicity of future novel therapeutic compounds.This research was funded by Beca de Investigacion Basica en Cardiologia from the Sociedad Española de Cardiologia, Fondo de Investigacion en Salud (grants PI18/00277, PI16/00742, PI19/00264, PI18/00960 and PI15/00553) from the Spanish Ministry of Science and Innovation, Instituto de Salud Carlos III–Fondo Europeo de Desarrollo Regional (FEDER), and Spanish Society of Respiratory Medicine (SEPAR) and Catalan Society of Pneumology (SOCAP) grants. FRJT and OTC are the recipients of the Ayudas para la formación de profesorado universitario (FPU19/04925) and Miguel Servet (CP17/00114) grants, respectively, from the Spanish Ministry of Science and Innovation. IDIBAPS belongs to the CERCA Programme, and receives partial funding from the Generalitat de Catalunya. Cofunding was provided by the Fondo Europeo de Desarrollo Regional (FEDER); “Una manera de hacer Europa”

    Intracoronary Administration of Allogeneic Adipose Tissue-Derived Mesenchymal Stem Cells Improves Myocardial Perfusion But Not Left Ventricle Function, in a Translational Model of Acute Myocardial Infarction

    Get PDF
    Background-Autologous adipose tissue-derived mesenchymal stem cells (ATMSCs) therapy is a promising strategy to improve post-myocardial infarction outcomes. In a porcine model of acute myocardial infarction, we studied the long-term effects and the mechanisms involved in allogeneic ATMSCs administration on myocardial performance. Methods and Results-Thirty-eight pigs underwent 50 minutes of coronary occlusion; the study was completed in 33 pigs. After reperfusion, allogeneic ATMSCs or culture medium (vehicle) were intracoronarily administered. Follow-ups were performed at short (2 days after acute myocardial infarction vehicle-treated, n=10; ATMSCs-treated, n=9) or long term (60 days after acute myocardial infarction vehicle-treated, n=7; ATMSCs-treated, n=7). At short term, infarcted myocardium analysis showed reduced apoptosis in the ATMSCs-treated animals (48.6 +/- 6\% versus 55.9 +/- 5.7\% in vehicle; P=0.017); enhancement of the reparative process with up-regulated vascular endothelial growth factor, granulocyte macrophage colony-stimulating factor, and stromal-derived factor-1 alpha gene expression; and increased M2 macrophages (67.2 +/- 10\% versus 54.7 +/- 10.2\% in vehicle; P=0.016). In long-term groups, increase in myocardial perfusion at the anterior infarct border was observed both on day-7 and day-60 cardiac magnetic resonance studies in ATMSCs-treated animals, compared to vehicle (87.9 +/- 28.7 versus 57.4 +/- 17.7 mL/min per gram at 7 days; P=0.034 and 99 +/- 22.6 versus 43.3 +/- 14.7 22.6 mL/min per gram at 60 days; P=0.0001, respectively). At day 60, higher vascular density was detected at the border zone in the ATMSCs-treated animals (118 +/- 18 versus 92.4 +/- 24.3 vessels/mm(2) in vehicle; P=0.045). Cardiac magnetic resonance-measured left ventricular ejection fraction of left ventricular volumes was not different between groups at any time point. Conclusions-In this porcine acute myocardial infarction model, allogeneic ATMSCs-based therapy was associated with increased cardioprotective and reparative mechanisms and with better cardiac magnetic resonance-measured perfusion. No effect on left ventricular volumes or ejection fraction was observed.This work was supported by grants from Fundacion la Marato de TV3 (122230); Fondo de Investigacion Sanitaria Instituto de Salud Carlos III and Fondo Europeo de Desarrollo Regional (FIS PI14/01682), (RD12/0042/0006), (RD12/0042/0047), (RD12/0019/0029) (TerCel RD16/0011/0006), CIBER Cardiovascular (CB16/11/00403) projects and Ministerio de Educacion y Ciencia (SAF2011-30067-C02-01) (SAF2014-59892). Fernaandez-Jimenez was the recipient of nonoverlapping grants from the Ministerio de Economia, Industria, y Competitividad through the Instituto de Salud Carlos III (Rio Hortega fellowship); and the Fundacion Jesus Serra, the Fundacion Interhospitalaria de Investigacion Cardiovascular (FIC), and the CNIC (FICNIC fellowship). The use of QMass software was partly supported by a scientific collaboration between the CNIC and Medis Medical Imaging Systems BV. The CNIC is supported by the Ministerio de Economia, Industria, y Competitividad (MINECO) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (MINECO award SEV-2015-0505). This work was also funded by ``la Caixa Banking Foundation, and the Generalitat de Catalunya (SGR 2014, CERCA Programme). This work has been developed in the context of AdvanceCat with the support of ACCIO (Catalonia Trade \& Investment; Generalitat de Catalunya) under the Catalonian ERDF operational program (European Regional Development Fund) 2014-2020.S

    Intracoronary administration of allogeneic adipose tissue-derived mesenchymal stem cells improves myocardial perfusion but not left ventricle function, in a translational model of acute myocardial infarction

    Get PDF
    Background-¿Autologous adipose tissue-derived mesenchymal stem cells (ATMSCs) therapy is a promising strategy to improve post-myocardial infarction outcomes. In a porcine model of acute myocardial infarction, we studied the long-term effects and the mechanisms involved in allogeneic ATMSCs administration on myocardial performance. Methods and Results-¿Thirty-eight pigs underwent 50 minutes of coronary occlusion; the study was completed in 33 pigs. After reperfusion, allogeneic ATMSCs or culture medium (vehicle) were intracoronarily administered. Follow-ups were performed at short (2 days after acute myocardial infarction vehicle-treated, n=10; ATMSCs-treated, n=9) or long term (60 days after acute myocardial infarction vehicle-treated, n=7; ATMSCs-treated, n=7). At short term, infarcted myocardium analysis showed reduced apoptosis in the ATMSCs-treated animals (48.6 6% versus 55.9 5.7% in vehicle; P=0.017); enhancement of the reparative process with up-regulated vascular endothelial growth factor, granulocyte macrophage colony-stimulating factor, and stromal-derived factor-1a gene expression; and increased M2 macrophages (67.2 10% versus 54.7 10.2% in vehicle; P=0.016). In long-term groups, increase in myocardial perfusion at the anterior infarct border was observed both on day-7 and day-60 cardiac magnetic resonance studies in ATMSCs-treated animals, compared to vehicle (87.9 28.7 versus 57.4 17.7 mL/min per gram at 7 days; P=0.034 and 99 22.6 versus 43.3 14.7 22.6 mL/min per gram at 60 days; P=0.0001, respectively). At day 60, higher vascular density was detected at the border zone in the ATMSCs-treated animals (118 18 versus 92.4 24.3 vessels/mm2 in vehicle; P=0.045). Cardiac magnetic resonance-measured left ventricular ejection fraction of left ventricular volumes was not different between groups at any time point. Conclusions-¿In this porcine acute myocardial infarction model, allogeneic ATMSCs-based therapy was associated with increased cardioprotective and reparative mechanisms and with better cardiac magnetic resonance-measured perfusion. No effect on left ventricular volumes or ejection fraction was observed

    A long-lasting porcine model of ARDS caused by pneumonia and ventilator-induced lung injury

    Get PDF
    Background: Animal models of acute respiratory distress syndrome (ARDS) do not completely resemble human ARDS, struggling translational research. We aimed to characterize a porcine model of ARDS induced by pneumonia—the most common risk factor in humans—and analyze the additional effect of ventilator-induced lung injury (VILI). Methods: Bronchoscopy-guided instillation of a multidrug-resistant Pseudomonas aeruginosa strain was performed in ten healthy pigs. In six animals (pneumonia-with-VILI group), pulmonary damage was further increased by VILI applied 3 h before instillation and until ARDS was diagnosed by PaO2/FiO2 &lt; 150 mmHg. Four animals (pneumonia-without-VILI group) were protectively ventilated 3 h before inoculum and thereafter. Gas exchange, respiratory mechanics, hemodynamics, microbiological studies and inflammatory markers were analyzed during the 96-h experiment. During necropsy, lobar samples were also analyzed. Results: All animals from pneumonia-with-VILI group reached Berlin criteria for ARDS diagnosis until the end of experiment. The mean duration under ARDS diagnosis was 46.8 ± 7.7 h; the lowest PaO2/FiO2 was 83 ± 5.45 mmHg. The group of pigs that were not subjected to VILI did not meet ARDS criteria, even when presenting with bilateral pneumonia. Animals developing ARDS presented hemodynamic instability as well as severe hypercapnia despite high-minute ventilation. Unlike the pneumonia-without-VILI group, the ARDS animals presented lower static compliance (p = 0.011) and increased pulmonary permeability (p = 0.013). The highest burden of P. aeruginosa was found at pneumonia diagnosis in all animals, as well as a high inflammatory response shown by a release of interleukin (IL)-6 and IL-8. At histological examination, only animals comprising the pneumonia-with-VILI group presented signs consistent with diffuse alveolar damage. Conclusions: In conclusion, we established an accurate pulmonary sepsis-induced ARDS model.</p

    A long-lasting porcine model of ARDS caused by pneumonia and ventilator-induced lung injury

    Get PDF
    Animal models of acute respiratory distress syndrome (ARDS) do not completely resemble human ARDS, struggling translational research. We aimed to characterize a porcine model of ARDS induced by pneumonia-the most common risk factor in humans-and analyze the additional effect of ventilator-induced lung injury (VILI). Bronchoscopy-guided instillation of a multidrug-resistant Pseudomonas aeruginosa strain was performed in ten healthy pigs. In six animals (pneumonia-with-VILI group), pulmonary damage was further increased by VILI applied 3 h before instillation and until ARDS was diagnosed by PaO/FiO < 150 mmHg. Four animals (pneumonia-without-VILI group) were protectively ventilated 3 h before inoculum and thereafter. Gas exchange, respiratory mechanics, hemodynamics, microbiological studies and inflammatory markers were analyzed during the 96-h experiment. During necropsy, lobar samples were also analyzed. All animals from pneumonia-with-VILI group reached Berlin criteria for ARDS diagnosis until the end of experiment. The mean duration under ARDS diagnosis was 46.8 ± 7.7 h; the lowest PaO/FiO was 83 ± 5.45 mmHg. The group of pigs that were not subjected to VILI did not meet ARDS criteria, even when presenting with bilateral pneumonia. Animals developing ARDS presented hemodynamic instability as well as severe hypercapnia despite high-minute ventilation. Unlike the pneumonia-without-VILI group, the ARDS animals presented lower static compliance (p = 0.011) and increased pulmonary permeability (p = 0.013). The highest burden of P. aeruginosa was found at pneumonia diagnosis in all animals, as well as a high inflammatory response shown by a release of interleukin (IL)-6 and IL-8. At histological examination, only animals comprising the pneumonia-with-VILI group presented signs consistent with diffuse alveolar damage. In conclusion, we established an accurate pulmonary sepsis-induced ARDS model. The online version contains supplementary material available at 10.1186/s13054-023-04512-8

    Walnut inclusion in a palm oil-based atherogenic diet promotes traits predicting stable atheroma plaque in Apoe-deficient mice

    Get PDF
    Introduction: The lower rates of cardiovascular disease in Southern Europe could be partially explained by the low prevalence of lipid-rich atheroma plaques. Consumption of certain foods affects the progression and severity of atherosclerosis. We investigated whether the isocaloric inclusion of walnuts within an atherogenic diet prevents phenotypes predicting unstable atheroma plaque in a mouse model of accelerated atherosclerosis. Methods: Apolipoprotein E-deficient male mice (10-week-old) were randomized to receive a control diet (9.6% of energy as fat, n = 14), a palm oil-based high-fat diet (43% of energy as fat, n = 15), or an isocaloric diet in which part of palm oil was replaced by walnuts in a dose equivalent to 30 g/day in humans (n = 14). All diets contained 0.2% cholesterol. Results: After 15 weeks of intervention, there were no differences in size and extension in aortic atherosclerosis among groups. Compared to control diet, palm oil-diet induced features predicting unstable atheroma plaque (higher lipid content, necrosis, and calcification), and more advanced lesions (Stary score). Walnut inclusion attenuated these features. Palm oil-based diet also boosted inflammatory aortic storm (increased expression of chemokines, cytokines, inflammasome components, and M1 macrophage phenotype markers) and promoted defective efferocytosis. Such response was not observed in the walnut group. The walnut group’s differential activation of nuclear factor kappa B (NF-κB; downregulated) and Nrf2 (upregulated) in the atherosclerotic lesion could explain these findings. Conclusion: The isocaloric inclusion of walnuts in an unhealthy high-fat diet promotes traits predicting stable advanced atheroma plaque in mid-life mice. This contributes novel evidence for the benefits of walnuts, even in an unhealthy dietary environment

    Towards quantitative digital subtraction perfusion angiography: An animal study

    Get PDF
    Background: X-ray digital subtraction angiography (DSA) is the imaging modality for peri-procedural guidance and treatment evaluation in (neuro-) vascular interventions. Perfusion image construction from DSA, as a means of quantitatively depicting cerebral hemodynamics, has been shown feasible. However, the quantitative property of perfusion DSA has not been well studied. Purpose: To comparatively study the independence of deconvolution-based perfusion DSA with respect to varying injection protocols, as well as its sensitivity to alterations in brain conditions. Methods: We developed a deconvolution-based algorithm to compute perfusion parametric images from DSA, including cerebral blood volume (CBV (Formula presented.)), cerebral blood flow (CBF (Formula presented.)), time to maximum (Tmax), and mean transit time (MTT (Formula presented.)) and applied it to DSA sequences obtained from two swine models. We also extracted the time intensity curve (TIC)-derived parameters, that is, area under the curve (AUC), peak concentration of the curve, and the time to peak (TTP) from these sequences. Deconvolution-based parameters were quantitatively compared to TIC-derived parameters in terms of consistency upon variations in injection profile and time resolution of DSA, as well as sensitivity to alterations of cerebral condition. Results: Comparing to TIC-derived parameters, the standard deviation (SD) of deconvolution-based parameters (normalized with respect to the mean) are two to five times smaller, indicating that they are more consistent across different injection protocols and time resolutions. Upon ischemic stroke induced in a swine model, the sensitivities of deconvolution-based parameters are equal to, if not higher than, those of TIC-derived parameters. Conclusions: In comparison to TIC-derived parameters, deconvolution-based perfusion imaging in DSA shows significantly higher quantitative reliability against variations in injection protocols across different time resolutions, and is sensitive to alterations in cerebral hemodynamics. The quantitative nature of perfusion angiography may allow for objective treatment assessment in neurovascular interventions
    corecore