55 research outputs found

    Crop Updates 2010 - Crop Specific

    Get PDF
    This session covers twenty four papers from different authors: PLENARY 1. Challenges facing western Canadian cropping over the next 10 years, Hugh J Beckie, Research Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan CROP SPECIFIC Breeding 2. The challenge of breeding canola hybrids – new opportunities for WA growers, Wallace Cowling, Research Director, Canola Breeders Western Australia Pty Ltd 3. Chickpea 2009 crop variety testing of germplasm developed by DAFWA/CLIMA/ICRISAT/COGGO alliance. Khan, TN1,3, Adhikari, K1,3, Siddique, K2, Garlinge, J1, Smith, L1, Morgan, S1 and Boyd, C1 1Department of Agriculture and Food, Western Australia (DAFWA), 2Insititute of Agriculture, The University of Western Australia (UWA), 3Centre for Legumes in Mediterranean Agriculture (CLIMA), The University of Western Australia 4. PBA Pulse Breeding Australia – 2009 Field Pea Results, Ian Pritchard1, Chris Veitch1, Colin Boyd1, Stuart Morgan1, Alan Harris1 and Tony Leonforte2, 1Department of Agriculture and Food, Western Australia, 2Department of Primary Industries, Victoria 5. PBA Pulse Breeding Australia – 2009 Chickpea Results, Ian Pritchard1, Chris Veitch1, Colin Boyd1, Murray Blyth1, Shari Dougal1 and Kristy Hobson2 1Department of Agriculture and Food, Western Australia, 2Department of Primary Industries, Victoria Decision Support 6. A tool for identifying problems in wheat paddocks, Ben Curtis and Doug Sawkins, Department of Agriculture and Food 7. DAFWA Seasonal Forecast for 2010, Stephens, D, Department of Agriculture and Food, Western Australian, Climate and Modelling Group Disease 8. Enhancement of black spot resistance in field pea, Kedar Adhikari, T Khan, S Morgan and C Boyd, Department of Agriculture and Food, 9. fungicide management of yellow spot in wheat, Ciara Beard, Kith Jayasena, Kazue Tanaka and Anne Smith, Department of Agriculture and Food 10. Resistance to infection by Beet western yellows virus in four Australian canola varieties, Brenda Coutts and Roger Jones, Department of Agriculture and Food 11. Yellow spot carryover risk from stubble in wheat-on-wheat rotations, Jean Galloway, Pip Payne and Tess Humphreys, Department of Agriculture and Food 12. Fungicides for the future: Management of Barley Powdery Mildew and Leaf Rust, Kith Jayasena, Kazue Tanaka and William MacLeod, Department of Agriculture and Food 13. 2009 canola disease survey and management options for blackleg and Sclerotinia in 2010, Ravjit Khangura, WJ MacLeod, M Aberra and H Mian, Department of Agriculture and Food 14. Impact of variety and fungicide on carryover of stubble borne inoculum and yellow spot severity in continuous wheat cropping, Geoff Thomas, Pip Payne, Tess Humphreys and Anne Smith, Department of Agriculture and Food 15. Limitations to the spread of Wheat streak mosaic virus by the Wheat curl mite in WA during 2009, Dusty Severtson, Peter Mangano, Brenda Coutts, Monica Kehoe and Roger Jones, Department of Agriculture and Food 16. Viable solutions for barley powdery mildew, Madeline A. Tucker, Australian Centre for Necrotrophic Fungal Pathogens, Murdoch University Marketing 17. The importance of varietal accreditation in a post-deregulation barley marketing environment, Neil Barker, Barley Australia 18. Can Australia wheat meet requirements for a new middle east market? Robert Loughman, Larisa Cato, Department of Agriculture and Food, and Ken Quail, BRI Australia VARIETY PERFORMANCE 19. Sowing rate and time for hybrid vs open-pollinated canola, Mohammad Amjad and Mark Seymour, Department of Agriculture and Food 20. HYOLA® National Hybrid vs OP Canola Hybrid F1 vs Retained Seed Generation Trial Results and recommendations for growers, Justin Kudnig, Mark Thompson, Anton Mannes, Michael Uttley, Chris Fletcher, Andrew Etherton, Nick Joyce and Kate Light, Pacific Seeds Australia 21. HYOLA® National Hybrid vs OP Canola Sowing Rate Trial Results and plant population recommendations for Australian growers, Justin Kudnig, Mark Thompson, Anton Mannes, Michael Uttley, Andrew Etherton, Chris Fletcher, Nick Joyce and Kate Light, Pacific Seeds Australia; Peter Hamblin, Agritech Research Young, NSW, Michael Lamond, Agrisearch, York, Western Australia 22. Desi chickpea agronomy for 2010, Alan Meldrum, Pulse Australia and Wayne Parker, Department of Agriculture and Food 23. New wheat varieties – exploit the benefits and avoid the pitfalls, Steve Penny, Sarah Ellis, Brenda Shackley, Christine Zaicou, Shahajahan Miyan, Darshan Sharma and Ben Curtis, Department of Agriculture and Food 24. The influence of genetics and environment on the level of seed alkaloid in narrow-leafed lupins, Greg Shea1, Bevan Buirchell1, David Harris2 and Bob French1, 1Department of Agriculture and Food, 2ChemCentr

    A history of high-power laser research and development in the United Kingdom

    Get PDF
    The first demonstration of laser action in ruby was made in 1960 by T. H. Maiman of Hughes Research Laboratories, USA. Many laboratories worldwide began the search for lasers using different materials, operating at different wavelengths. In the UK, academia, industry and the central laboratories took up the challenge from the earliest days to develop these systems for a broad range of applications. This historical review looks at the contribution the UK has made to the advancement of the technology, the development of systems and components and their exploitation over the last 60 years

    Crop Updates 2006 - Lupins and Pulses

    Get PDF
    This session covers sixty six papers from different authors: 2005 LUPIN AND PULSE INDUSTRY HIGHLIGHTS 1. Lupin Peter White, Department of Agriculture 2. Pulses Mark Seymour, Department of Agriculture 3. Monthly rainfall at experimental sites in 2005 4. Acknowledgements Amelia McLarty EDITOR 5. Contributors 6. Background Peter White, Department of Agriculture 2005 REGIONAL ROUNDUP 7. Northern agricultural region Wayne Parker, Department of Agriculture 8. Central agricultural region Ian Pritchard and Bob French, Department of Agriculture 9. Great southern and lakes Rodger Beermier, Department of Agriculture 10. South east region Mark Seymour, Department of Agriculture LUPIN AND PULSE PRODUCTION AGRONOMY AND GENETIC IMPROVEMENT 11. Lupin Peter White, Department of Agriculture 12. Narrow-leafed lupin breeding Bevan Buirchell, Department of Agriculture 13. Progress in the development of pearl lupin (Lupinus mutabilis) for Australian agriculture, Mark Sweetingham1,2, Jon Clements1, Geoff Thomas2, Roger Jones1, Sofia Sipsas1, John Quealy2, Leigh Smith1 and Gordon Francis1 1CLIMA, The University of Western Australia 2Department of Agriculture 14. Molecular genetic markers and lupin breeding, Huaan Yang, Jeffrey Boersma, Bevan Buirchell, Department of Agriculture 15. Construction of a genetic linkage map using MFLP, and identification of molecular markers linked to domestication genes in narrow-leafed lupin (Lupinus augustiflolius L) Jeffrey Boersma1,2, Margaret Pallotta3, Bevan Buirchell1, Chengdao Li1, Krishnapillai Sivasithamparam2 and Huaan Yang1 1Department of Agriculture, 2The University of Western Australia, 3Australian Centre for Plant Functional Genomics, South Australia 16. The first gene-based map of narrow-leafed lupin – location of domestication genes and conserved synteny with Medicago truncatula, M. Nelson1, H. Phan2, S. Ellwood2, P. Moolhuijzen3, M. Bellgard3, J. Hane2, A. Williams2, J. Fos‑Nyarko4, B. Wolko5, M. Książkiewicz5, M. Cakir4, M. Jones4, M. Scobie4, C. O’Lone1, S.J. Barker1, R. Oliver2, and W. Cowling1 1School of Plant Biology, The University of Western Australia, 2Australian Centre for Necrotrophic Fungal Pathogens, Murdoch University, 3Centre for Bioinformatics and Biological Computing, Murdoch University, 4School of Biological Sciences and Biotechnology, SABC, Murdoch University,5Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland 17. How does lupin optimum density change row spacing? Bob French and Laurie Maiolo, Department of Agriculture 18. Wide row spacing and seeding rate of lupins with conventional and precision seeding machines Martin Harries, Jo Walker and Murray Blyth, Department of Agriculture 19. Influence of row spacing and plant density on lupin competition with annual ryegrass, Martin Harries, Jo Walker and Murray Blyth, Department of Agriculture 20. Effect of timing and speed of inter-row cultivation on lupins, Martin Harries, Jo Walker and Steve Cosh, Department of Agriculture 21. The interaction of atrazine herbicide rate and row spacing on lupin seedling survival, Martin Harries and Jo Walker Department of Agriculture 22. The banding of herbicides on lupin row crops, Martin Harries, Jo Walker and Murray Blyth, Department of Agriculture 23. Large plot testing of herbicide tolerance of new lupin lines, Wayne Parker, Department of Agriculture 24. Effect of seed source and simazine rate of seedling emergence and growth, Peter White and Greg Shea, Department of Agriculture 25. The effect of lupin row spacing and seeding rate on a following wheat crop, Martin Harries, Jo Walker and Dirranie Kirby, Department of Agriculture 26. Response of crop lupin species to row spacing, Leigh Smith1, Kedar Adhikari1, Jon Clements2 and Patrizia Guantini3, 1Department of Agriculture, 2CLIMA, The University of Western Australia, 3University of Florence, Italy 27. Response of Lupinus mutabilis to lime application and over watering, Peter White, Leigh Smith and Mark Sweetingham, Department of Agriculture 28. Impact of anthracnose on yield of Andromeda lupins, Geoff Thomas, Kedar Adhikari and Katie Bell, Department of Agriculture 29. Survey of lupin root health (in major production areas), Geoff Thomas, Ken Adcock, Katie Bell, Ciara Beard and Anne Smith, Department of Agriculture 30. Development of a generic forecasting and decision support system for diseases in the Western Australian wheatbelt, Tim Maling1, Art Diggle1,2, Debbie Thackray1, Kadambot Siddique1 and Roger Jones1,2 1CLIMA, The University of Western Australia, 2Department of Agriculture 31.Tanjil mutants highly tolerant to metribuzin, Ping Si1, Mark Sweetingham1,2, Bevan Buirchell1,2 and Huaan Yang l,2 1CLIMA, The University of Western Australia, 2Department of Agriculture 32. Precipitation pH vs. yield and functional properties of lupin protein isolate, Vijay Jayasena1, Hui Jun Chih1 and Ken Dods2 1Curtin University of Technology, 2Chemistry Centre 33. Lupin protein isolation with the use of salts, Vijay Jayasena1, Florence Kartawinata1,Ranil Coorey1 and Ken Dods2 1Curtin University of Technology, 2Chemistry Centre 34. Field pea, Mark Seymour, Department of Agriculture 35. Breeding highlights Kerry Regan1,2, Tanveer Khan1,2, Stuart Morgan1 and Phillip Chambers1 1Department of Agriculture, 2CLIMA, The University of Western Australia 36. Variety evaluation, Kerry Regan1,2, Tanveer Khan1,2, Jenny Garlinge1 and Rod Hunter1 1Department of Agriculture, 2CLIMA, The University of Western Australia 37. Days to flowering of field pea varieties throughout WA Mark Seymour1, Ian Pritchard1, Rodger Beermier1, Pam Burgess1 and Dr Eric Armstrong2 Department of Agriculture, 2NSW Department of Primary Industries, Wagga Wagga 38. Semi-leafless field peas yield more, with less ryegrass seed set, in narrow rows, Glen Riethmuller, Department of Agriculture 39. Swathing, stripping and other innovative ways to harvest field peas, Mark Seymour, Ian Pritchard, Rodger Beermier and Pam Burgess, Department of Agriculture 40. Pulse demonstrations, Ian Pritchard, Wayne Parker, Greg Shea, Department of Agriculture 41. Field pea extension – focus on field peas 2005, Ian Pritchard, Department of Agriculture 42. Field pea blackspot disease in 2005: Prediction versus reality, Moin Salam, Jean Galloway, Pip Payne, Bill MacLeod and Art Diggle, Department of Agriculture 43. Pea seed-borne mosaic virus in pulses: Screening for seed quality defects and virus resistance, Rohan Prince, Brenda Coutts and Roger Jones, Department of Agriculture, and CLIMA, The University of Western Australia 44. Yield losses from sowing field peas infected with pea seed-borne mosaic virus, Rohan Prince, Brenda Coutts and Roger Jones, Department of Agriculture, and CLIMA, The University of Western Australia 45. Desi chickpea, Wayne Parker, Department of Agriculture 46. Breeding highlights, Tanveer Khan 1,2, Pooran Gaur3, Kadambot Siddique2, Heather Clarke2, Stuart Morgan1and Alan Harris1, 1Department of Agriculture2CLIMA, The University of Western Australia, 3International Crop Research Institute for Semi Arid Tropics (ICRISAT), India 47. National chickpea improvement program, Kerry Regan1, Ted Knights2 and Kristy Hobson3,1Department of Agriculture, 2Agriculture New South Wales 3Department of Primary Industries, Victoria 48. Chickpea breeding lines in CVT exhibit excellent ascochyta blight resistance, Tanveer Khan1,2, Alan Harris1, Stuart Morgan1 and Kerry Regan1,2, 1Department of Agriculture, 2CLIMA, The University of Western Australia 49. Variety evaluation, Kerry Regan1,2, Tanveer Khan1,2, Jenny Garlinge2 and Rod Hunter2, 1CLIMA, The University of Western Australia 2Department of Agriculture 50. Desi chickpeas for the wheatbelt, Wayne Parker and Ian Pritchard, Department of Agriculture 51. Large scale demonstration of new chickpea varieties, Wayne Parker, MurrayBlyth, Steve Cosh, Dirranie Kirby and Chris Matthews, Department of Agriculture 52. Ascochyta management with new chickpeas, Martin Harries, Bill MacLeod, Murray Blyth and Jo Walker, Department of Agriculture 53. Management of ascochyta blight in improved chickpea varieties, Bill MacLeod1, Colin Hanbury2, Pip Payne1, Martin Harries1, Murray Blyth1, Tanveer Khan1,2, Kadambot Siddique2, 1Department of Agriculture, 2CLIMA, The University of Western Australia 54. Botrytis grey mould of chickpea, Bill MacLeod, Department of Agriculture 55. Kabuli chickpea, Kerry Regan, Department of Agriculture, and CLIMA, The University of Western Australia 56. New ascochyta blight resistant, high quality kabuli chickpea varieties, Kerry Regan1,2, Kadambot Siddique2, Tim Pope2 and Mike Baker1, 1Department of Agriculture, 2CLIMA, The University of Western Australia 57. Crop production and disease management of Almaz and Nafice, Kerry Regan and Bill MacLeod, Department of Agriculture, and CLIMA, The University of Western Australia 58. Faba bean,Mark Seymour, Department of Agriculture 59. Germplasm evaluation – faba bean, Mark Seymour1, Tim Pope2, Peter White1, Martin Harries1, Murray Blyth1, Rodger Beermier1, Pam Burgess1 and Leanne Young1,1Department of Agriculture, 2CLIMA, The University of Western Australia 60. Factors affecting seed coat colour of faba bean during storage, Syed Muhammad Nasar-Abbas1, Julie Plummer1, Kadambot Siddique2, Peter White 3, D. Harris4 and Ken Dods4.1The University of Western Australia, 2CLIMA, The University of Western Australia, 3Department of Agriculture, 4Chemistry Centre 61. Lentil,Kerry Regan, Department of Agriculture, and CLIMA, The University of Western Australia 62. Variety and germplasm evaluation, Kerry Regan1,2, Tim Pope2, Leanne Young1, Phill Chambers1, Alan Harris1, Wayne Parker1 and Michael Materne3, 1Department of Agriculture 2CLIMA, The University of Western Australia, 3Department of Primary Industries, Victoria Pulse species 63. Land suitability for production of different crop species in Western Australia, Peter White, Dennis van Gool, and Mike Baker, Department of Agriculture 64. Genomic synteny in legumes: Application to crop breeding, Huyen Phan1, Simon Ellwood1, J. Hane1, Angela Williams1, R. Ford2, S. Thomas3 and Richard Oliver1,1Australian Centre of Necrotrophic Plant Pathogens, Murdoch University 2BioMarka, School of Agriculture and Food Systems, ILFR, University of Melbourne 3NSW Department of Primary Industries 65. ALOSCA – Development of a dry flow legume seed inoculant, Rory Coffey and Chris Poole, ALOSCA Technologies Pty Ltd 66. Genetic dissection of resistance to fungal necrotrophs in Medicago truncatula, Simon Ellwood1, Theo Pfaff1, Judith Lichtenzveig12, Lars Kamphuis1, Nola D\u27Souza1, Angela Williams1, Emma Groves1, Karam Singh2 and Richard Oliver1 1Australian Centre of Necrotrophic Plant Pathogens, Murdoch University, 2CSIRO Plant Industry APPENDIX I: LIST OF COMMON ACRONYM

    Crop Updates 2005 - Lupins and Pulses

    Get PDF
    This session covers sixty five papers from different authors: 1. 2004 LUPIN AND PULSE INDUSTRY HIGHLIGHTS, Peter White Department of Agriculture 2. BACKGROUND, Peter White Department of Agriculture 2004 REGIONAL ROUNDUP 3. Northern Agricultural Region, Martin Harries, Department of Agriculture 4. Central Agricultural Region, Ian Pritchard, Department of Agriculture 5. Great Southern and Lakes, Rodger Beermier, Department of Agriculture 6. Esperance Port Zone, Mark Seymour, Department of Agriculture, and David Syme, The Grain Pool of WA LUPIN AND PULSE PRODUCTION AGRONOMY AND GENETIC IMPROVEMENT 7. Lupin, Martin Harries, Department of Agriculture 8. Narrow-leafed lupin breeding, Bevan Buirchell, Department of Agriculture 9. Yellow lupin breeding in Western Australia, Kedar Adhikari, Mark Sweetingham and Bevan Buirchell, Department of Agriculture 10. WALAB2000 - First Anthracnose resistant albus lupins, Kedar Adhikari, Bevan Buirchell, MarkSweetingham and Geoff Thomas, Department of Agriculture 11. Improving lupin grain quality and yield through genetic manipulation of key physiological traits, Jon Clements1 and Bevan Buirchell2,1CLIMA, The University of Western Australia 2Department of Agriculture 12. Lupin alkaloids in four Australian species, Shao Fang Wang, Chemistry Centre (WA), CLIMA, The University of Western Australia 13. Improving lupin tolerance to herbicides of metribuzin, isoxaflutole and carfentrazone-ethyl, Ping Si1, Mark Sweetingham12, Bevan Buirchell12, David Bowran2 and Huaan Yang12 , 1CLIMA, The University of Western Australia, 2Department of Agriculture 14. Combined cultural and shielded sprayer herbicide application for weed management, Martin Harries and Mike Baker Department of Agriculture 15. Field testing of lupin seed of various sources with and without post maturity, pre harvest rain for field establishment, Martin Harries, Wayne Parker, Mike Baker, Department of Agriculture 16. Lupin seed rate by wide row spacing, Martin Harries, Bob French, Damien Owen D’arcy, Department of Agriculture 17. How environment influences row spacing response in lupins, Bob French, Department of Agriculture 18. The effect of wider row spacing on lupin architecture, growth and nutrient uptake dynamics, Bill Bowden and Craig Scanlan, Department of Agriculture 19. Fertiliser placement and application rate in wide rows, Martin Harries, Damien Owen D’arcy, Department of Agriculture 20. The pros and cons of cowing lupins in ‘wide’ rows, Wayne Parker, Bob French and Martin Harries, Department of Agriculture 21. Investigation into the influence of row orientation in lupin crops, Jeff Russell1 and Angie Roe2, 1Department of Agriculture, 2Farm Focus Consultants 22. Making the most of Mandelup, Greg Shea and Chris Matthews, Department of Agriculture 23. The effect of wild radish density and lupin cultivars on their competition at Merredin, Shahab Pathan, Abul Hashem and Bob French, Department of Agriculture 24. The potential of pearl lupin (Lupinus mutabilis) for southern Australia, Jon Clements1, Mark Sweetingham2, Bevan Buirchell2, Sofia Sipsas2, Geoff Thomas2, John Quealy1, Roger Jones2, Clive Francis1, Colin Smith2 and Gordon Francis1, 1CLIMA, University of Western Australia 2Department of Agriculture 25. Field pea, Mark Seymour, Department of Agriculture 26. Breeding highlights, Tanveer. Khan and Bob French, Department of Agriculture 27. Variety evaluation, Tanveer Khan, Kerry Regan, Jenny Garlinge and Rod Hunter, Department of Agriculture 28. Large scale field pea variety trials, Martin Harries, Department of Agriculture 29. Kaspa demonstrations, Rodger Beermier, Mark Seymour, Ian Pritchard, Graham Mussell, Department of Agriculture 30. Field pea harvesting demonstration at Merredin, Glen Riethmuller, Greg Shea and Bob French, Department of Agriculture 31. Does Kaspa respond differently to disease, fungicides, time of sowing or seed rate, Mark Seymour, Department of Agriculture 32. Field pea response to foliar Manganese in mallee district, Mark Seymour, Department of Agriculture 33. Kaspa harvesting observations 2004, Mark Seymour, Ian Pritchard, Glen Riethmuller, Department of Agriculture 34. ‘Blackspot Manager’ for understanding blackspot of peas and ascochyta blight management, Moin Salam and Jean Galloway, Department of Agriculture 35. 250,000 ha of field pea in WA – Is it sustainable? Larn McMurray1 and Mark Seymour2, 1South Australian Research and Development Institute, 2Department of Agriculture 36. Desi chickpea, Wayne Parker, Department of Agriculture 37. Breeding highlights, Tanveer Khan1,2 and Kadambot Siddique2,1Department of Agriculture, 2CLIMA, The University of Western Australia 38. Variety evaluation, Tanveer Khan, Kerry Regan, Jenny Garlinge and Rod Hunter, Department of Agriculture 39. Large scale variety testing of desi chickpeas, Martin Harries, Greg Shea, Mike Baker, Dirranie Kirby, Department of Agriculture 40. Desi variety chickpea trial, Martin Harries and Murray Blyth, Department of Agriculture 41. Seeding rates and row spacing of chickpea desi, Martin Harries, MurrayBlyth, Damien Owen D’arcy, Department of Agriculture 42. Molecular characterisation of chickpea wild relatives, Fucheng Shan, Heather Clarke and Kadambot Siddique, CLIMA, The University of Western Australia 43. Plant phosphorus status has a limited influence on the concentration of phosphorus-mobilising carboxylates in the rhizosphere of chickpea, Madeleine Wouterlood, Hans Lambers and Erik Veneklaas, The University of Western Australia 44. Kabuli chickpea, Kerry Regan, Department of Agriculture, and CLIMA, The University of Western Australia 45. ‘Kimberly Large’ A high quality and high yielding new variety for the Ord River Irrigation Area, Kerry Regan1,2, Kadambot Siddique2, Peter White1,2, Peter Smith1 and Gae Plunkett1,1Department of Agriculture, 2CLIMA, University of Western Australia 46. Development of ascochyta resistant and high quality varieties for Australia, Kadambot Siddique1, Kerry Regan1,2, Tim Pope1 and Mike Baker2, 1CLIMA, The University of Western Australia 2Department of Agriculture 47. Towards double haploids in chickpeas and field pea, Janine Croser, Julia Wilson and Kadambot Siddique, CLIMA, The University of Western Australia 48. Crossing chickpea with wild Cicer relatives to introduce resistance to disease and tolerance to environmental stress, Heather Clarke and Kadambot Siddique, CLIMA, The University of Western Australia 49. Faba bean, Peter White, Department of Agriculture 50. Germplasm evaluation, Peter White1,2, Kerry Regan1,2, Tim Pope2, Martin Harries1, Mark Seymour1, Rodger Beermier1 and Leanne Young1, 1Department of Agriculture, 2CLIMA, The University of Western Australia 51. Lentil, Kerry Regan, Department of Agriculture, and CLIMA, The University of Western Australia 52. Variety and germplasm evaluation, Kerry Regan1,2, Tim Pope2, Leanne Young1, Martin Harries1, Murray Blyth1 and Michael Materne3, 1Department of Agriculture, 2CLIMA, University of Western Australia, 3Department of Primary Industries, Victoria 53. Lathyrus species, Kadambot Siddique1, Kerry Regan2, and Colin Hanbury2, 1CLIMA, the University of Western Australia, 2Department of Agricultur

    Sub-Telomere Directed Gene Expression during Initiation of Invasive Aspergillosis

    Get PDF
    Aspergillus fumigatus is a common mould whose spores are a component of the normal airborne flora. Immune dysfunction permits developmental growth of inhaled spores in the human lung causing aspergillosis, a significant threat to human health in the form of allergic, and life-threatening invasive infections. The success of A. fumigatus as a pathogen is unique among close phylogenetic relatives and is poorly characterised at the molecular level. Recent genome sequencing of several Aspergillus species provides an exceptional opportunity to analyse fungal virulence attributes within a genomic and evolutionary context. To identify genes preferentially expressed during adaptation to the mammalian host niche, we generated multiple gene expression profiles from minute samplings of A. fumigatus germlings during initiation of murine infection. They reveal a highly co-ordinated A. fumigatus gene expression programme, governing metabolic and physiological adaptation, which allows the organism to prosper within the mammalian niche. As functions of phylogenetic conservation and genetic locus, 28% and 30%, respectively, of the A. fumigatus subtelomeric and lineage-specific gene repertoires are induced relative to laboratory culture, and physically clustered genes including loci directing pseurotin, gliotoxin and siderophore biosyntheses are a prominent feature. Locationally biased A. fumigatus gene expression is not prompted by in vitro iron limitation, acid, alkaline, anaerobic or oxidative stress. However, subtelomeric gene expression is favoured following ex vivo neutrophil exposure and in comparative analyses of richly and poorly nourished laboratory cultured germlings. We found remarkable concordance between the A. fumigatus host-adaptation transcriptome and those resulting from in vitro iron depletion, alkaline shift, nitrogen starvation and loss of the methyltransferase LaeA. This first transcriptional snapshot of a fungal genome during initiation of mammalian infection provides the global perspective required to direct much-needed diagnostic and therapeutic strategies and reveals genome organisation and subtelomeric diversity as potential driving forces in the evolution of pathogenicity in the genus Aspergillus

    Energy Resolution Performance of the CMS Electromagnetic Calorimeter

    Get PDF
    The energy resolution performance of the CMS lead tungstate crystal electromagnetic calorimeter is presented. Measurements were made with an electron beam using a fully equipped supermodule of the calorimeter barrel. Results are given both for electrons incident on the centre of crystals and for electrons distributed uniformly over the calorimeter surface. The electron energy is reconstructed in matrices of 3 times 3 or 5 times 5 crystals centred on the crystal containing the maximum energy. Corrections for variations in the shower containment are applied in the case of uniform incidence. The resolution measured is consistent with the design goals
    • …
    corecore