88 research outputs found

    Can Transgenic Maize Affect Soil Microbial Communities?

    Get PDF
    The aim of the experiment was to determine if temporal variations of belowground activity reflect the influence of the Cry1Ab protein from transgenic maize on soil bacteria and, hence, on a regulatory change of the microbial community (ability to metabolize sources belonging to different chemical guilds) and/or a change in numerical abundance of their cells. Litter placement is known for its strong influence on the soil decomposer communities. The effects of the addition of crop residues on respiration and catabolic activities of the bacterial community were examined in microcosm experiments. Four cultivars of Zea mays L. of two different isolines (each one including the conventional crop and its Bacillus thuringiensis cultivar) and one control of bulk soil were included in the experimental design. The growth models suggest a dichotomy between soils amended with either conventional or transgenic maize residues. The Cry1Ab protein appeared to influence the composition of the microbial community. The highly enhanced soil respiration observed during the first 72 h after the addition of Bt-maize residues can be interpreted as being related to the presence of the transgenic crop residues. This result was confirmed by agar plate counting, as the averages of the colony-forming units of soils in conventional treatments were about one-third of those treated with transgenic straw. Furthermore, the addition of Bt-maize appeared to induce increased microbial consumption of carbohydrates in BIOLOG EcoPlates. Three weeks after the addition of maize residues to the soils, no differences between the consumption rate of specific chemical guilds by bacteria in soils amended with transgenic maize and bacteria in soils amended with conventional maize were detectable. Reaped crop residues, comparable to post-harvest maize straw (a common practice in current agriculture), rapidly influence the soil bacterial cells at a functional level. Overall, these data support the existence of short Bt-induced ecological shifts in the microbial communities of croplands' soils

    Nitrogen losses from two grassland soils with different fungal biomass.

    Get PDF
    Nitrogen losses from agricultural grasslands cause eutrophication of ground- and surface water and contribute to global warming and atmospheric pollution. It is widely assumed that soils with a higher fungal biomass have lower N losses, but this relationship has never been experimentally confirmed. With the increased attention for soil-based ecosystem services and sustainable management of soils, such a relationship would be relevant for agricultural management. Here we present a first attempt to test this relationship experimentally . We used intact soil columns from two plots from a field experiment that had consistent differences in fungal biomass (68 Ā± 8 vs. 111 Ā± 9 Ī¼g C g-1) as a result of different fertilizer history (80 vs. 40 kg N ha-1 y-1 as farm yard manure), while other soil properties were very similar. In the greenhouse, the columns received either mineral fertilizer N or no N (control). We measured N leaching, N2O emissions and denitrification from the columns during 4 weeks, after which we analyzed fungal and bacterial biomass and soil N pools. We found that N2O emission and denitrification were lower in the high fungal biomass soil, irrespective of the addition of fertilizer N. After fertilizer addition, N leaching in low fungal biomass soil showed a 3-fold increase compared to the control (11.9 Ā± 1.0 and 3.9 Ā± 1.0 kg N ha-1, respectively), but did not increase in high fungal biomass soil (6.4 Ā± 0.9 after N addition vs. 4.5 Ā± 0.8 kg N ha-1 in the control). Thus, in the high fungal biomass soil more N was immobilized. An additional experiment with 15Nā€“labelled mineral fertilizer, showed a 2-fold higher immobilization of 15N into microbial biomass in the high fungal biomass soil. However, only 3% of total 15N was found in the microbial biomass 2 weeks after the mineral fertilization. Most of the recovered 15N was in the plants (approximately 25%) or in the soil organic matter (approximately 15%). Our main experiment confirmed the assumption of lower N losses in a soil with higher fungal biomass. The additional 15N experiment showed that higher fungal biomass is probably not the direct cause of higher N immobilization, but rather the result of low nitrogen availability. Both experiments confirmed that higher fungal biomass can be considered as an indicator of higher nutrient retention in soils

    Effect van mest op de biologische bodemkwaliteit in de Zeeuwse akkerbouw

    Get PDF
    Dit rapport begint met een overzicht van de mestsamenstelling (hoofdstuk 2). Daarna volgt een beschrijving van bodemvruchtbaarheid in het algemeen en bodembiodiversiteit in het bijzonder (hoofdstuk 3). De analyse van effecten van mest is in hoofdstuk 4 beschreven

    Applying soil health indicators to encourage sustainable soil use : The transition from scientific study to practical application

    Get PDF
    The sustainable management of land for agricultural production has at its core a healthy soil, because this reduces the quantity of external inputs, reduces losses of nutrients to the environment, maximises the number of days when the soil can be worked, and has a pore structure that maximises both the retention of water in dry weather and drainage of water in wet weather. Soil health encompasses the physical, chemical, and biological features, but the use of biological indicators is the least well advanced. Sustainability also implies the balanced provision of ecosystem services, which can be more difficult to measure than single indicators. We describe how the key components of the soil food web contribute to a healthy soil and give an overview of the increasing number of scientific studies that have examined the use of biological indicators. A case study is made of the ecosystem service of water infiltration, which is quite an undertaking to measure directly, but which can be inferred from earthworm abundance and biodiversity which is relatively easy to measure. This highlights the difficulty of putting any monitoring scheme into practice and we finish by providing the considerations in starting a new soil health monitoring service in the UK and in maintaining biological monitoring in The Netherlands.</p

    Making IT governance work in a Sarbanes-Oxley world /

    No full text
    Includes bibliographical references and index

    Bacterial Diversity in Agricultural Soils during Litter Decomposition

    Get PDF
    Denaturing gradient gel electrophoresis (DGGE) of amplified fragments of genes coding for 16S rRNA was used to study the development of bacterial communities during decomposition of crop residues in agricultural soils. Ten strains were tested, and eight of these strains produced a single band. Furthermore, a mixture of strains yielded distinguishable bands. Thus, DGGE DNA band patterns were used to estimate bacterial diversity. A field experiment performed with litter in nylon bags was used to evaluate the bacterial diversity during the decomposition of readily degradable rye and more refractory wheat material in comparable luvisols and cambisols in northern, central, and southern Germany. The amount of bacterial DNA in the fresh litter was small. The DNA content increased rapidly after the litter was added to the soil, particularly in the rapidly decomposing rye material. Concurrently, diversity indices, such as the Shannon-Weaver index, evenness, and equitability, which were calculated from the number and relative abundance (intensity) of the bacterial DNA bands amplified from genes coding for 16S rRNA, increased during the course of decomposition. This general trend was not significant for evenness and equitability at any time. The indices were higher for the more degradation-resistant wheat straw than for the more easily decomposed rye grass. Thus, the DNA band patterns indicated that there was increasing bacterial diversity as decomposition proceeded and substrate quality decreased. The bacterial diversity differed for the sites in northern, central, and southern Germany, where the same litter material was buried in the soil. This shows that in addition to litter type climate, vegetation, and indigenous microbes in the surrounding soil affected the development of the bacterial communities in the litter

    Fixation, Counting, and Manipulation of Heterotrophic Nanoflagellates

    No full text
    Quantitative effects of several fixatives on heterotrophic nanoflagellates (HNAN) and phototrophic nanoflagellates (PNAN) were investigated by hemacytometer and epifluorescence counting techniques. Counts of Monas sp. cultures before and after fixation with unbuffered 0.3% glutaraldehyde and 5% formaldehyde showed no loss of cells during fixation, and cell concentrations remained constant for several weeks after fixation. Buffering of fixatives with borax caused severe losses, up to 100% within 2 h. Field samples from Lake Vechten showed no decline of HNAN and total nanoflagellate concentrations for at least 1 week after fixation with 5% formaldehyde and with 1% glutaraldehyde. With 1% glutaraldehyde, the chlorophyll autofluorescence of PNAN was much brighter than with 5% formaldehyde, although it was lost after a few days and thus limited the storage time of samples. However, when primulin-stained slides were prepared soon after fixation and stored at āˆ’30Ā°C, the loss of autofluorescence was prevented and PNAN and HNAN concentrations were stable for at least 16 weeks. Effects of filtration and centrifugation on HNAN were also studied. Filtration vacuum could not exceed 3 kPa since 10 kPa already caused losses of 15 to 20%. Similar losses were caused by centrifugation, even at low speed (500 Ɨ g)

    De invloed van klimaatverandering op de bodemtemperatuur : Inventarisatie van de ontwikkeling van de bodemtemperatuur en de invloed op de biotische en abiotische processen in natuurgebieden

    No full text
    Climate change has caused an increase of the soil temperature of the top 100 cm of 1.5 C on average over the past 40 years. This increase leads to an acceleration of various soil processes such as mineralization, denitrification and peat oxidation. Soil temperature is one of the many factors that play a role in the development of natural vegetation. There is also a strong interaction between the vegetation and the soil temperature, whereby the effect of vegetation on soil temperature exceeds that of soil temperature on vegetation. This means that soil temperature depends very much on the local microclimate. Further research should clarify the extent to which the soil temperature will continue to rise in the future and what the consequences will be for the design and management of nature reserves
    • ā€¦
    corecore