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Nitrogen losses from agricultural grasslands cause eutrophication of ground- and surface water and
contribute to global warming and atmospheric pollution. It is widely assumed that soils with a higher
fungal biomass have lower N losses, but this relationship has never been experimentally confirmed. With
the increased interest in soil-based ecosystem services and sustainable management of soils, such a rela-
tionship would be relevant for agricultural management. Here we present a first attempt to test this
relationship experimentally. We used intact soil columns from two plots from a field experiment that had
consistent differences in fungal biomass (68 + 8 vs.111 £ 9 ug Cg~ ') as a result of different fertilizer history
(80vs.40 kg Nha~'y~! as farm yard manure), while other soil properties were very similar. We performed
two greenhouse experiments: in the main experiment the columns received either mineral fertilizer N or
no N (control). We measured N leaching, N>O emission and denitrification from the columns during 4
weeks, after which we analyzed fungal and bacterial biomass and soil N pools. In the additional N
experiment we traced added N in leachates, soil, plants and microbial biomass. We found that in the main
experiment, NoO emission and denitrification were lower in the high fungal biomass soil, irrespective of
the addition of fertilizer N. Higher >N recovery in the high fungal biomass soil also indicated lower N losses
through dentrification. In the main experiment, N leaching after fertilizer addition showed a 3-fold
increase compared to the control in low fungal biomass soil (11.9 & 1.0 and 3.9 & 1.0 kg N ha~, respec-
tively), but did not increase in high fungal biomass soil (6.4 = 0.9 after N addition vs. 4.5 + 0.8 kg Nha ' in
the control). Thus, in the high fungal biomass soil more N was immobilized. However, the 1°N experiment
did not confirm these results; N leaching was higher in high fungal biomass soil, even though this soil
showed higher immobilization of °N into microbial biomass. However, only 3% of total >N was found in
the microbial biomass 2 weeks after the mineral fertilization. Most of the recovered '°N was found in plants
(approximately 25%) and soil organic matter (approximately 15%), and these amounts did not differ
between the high and the low fungal biomass soil. Our main experiment confirmed the assumption of
lower N losses in a soil with higher fungal biomass. The additional >N experiment showed that higher
fungal biomass is probably not the direct cause of higher N retention, but rather the result of low nitrogen
availability. Both experiments confirmed that higher fungal biomass can be considered as an indicator of
higher nitrogen retention in soils.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

in relatively undisturbed, late-successional sites with a high
organic matter content and low resource quality (Coleman et al.,

Fungi and bacteria are the main organisms decomposing organic
matter in soils. They each support their own food chain of soil
fauna, and soil ecosystems are often characterized by having
a fungal-dominated or a bacterial-dominated decomposition
pathway (Wardle et al., 2004a). Fungal-dominated food webs occur
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1983). Because of the low nutrient availability in these systems,
fungi are associated with ‘slow’ and highly conservative nutrient
cycling (Van der Heijden et al., 2008; Wardle et al., 2004a). There
are a number of studies that show that shifts from fungal toward
bacterial-dominated microbial communities are associated with
increased rates of nutrient cycling. For example, Bardgett et al.
(2006) showed that the presence of the hemiparasite Rhinathus
minor in grassland lead to a shift in the microbial community
toward increasing dominance of bacteria, which was associated
with increasing rates of N cycling in soil. Wardle et al. (2004b)
found that ecosystem decline was associated with increasing
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phosphorus limitation, which was paralleled by a shift in the
microbial community toward fungal dominance. Also, De Vries
et al. (2006) found that a higher fungal biomass in soil was asso-
ciated with reduced N leaching in agricultural grasslands, whereas
Gordon et al. (2008) found that, after drying and rewetting, soil
from unimproved grasslands with a high fungal biomass retained
nutrients better than soil from improved, more bacterial-rich
grasslands. Repeated observations of decreasing fungal biomass
with intensification of management have led to the inference that
fungal dominance is indicative for ecosystems with low N losses
(Bardgett and McAlister, 1999; De Vries et al., 2007; De Vries et al.,
2006). However, although this inference is widespread in ecology,
most studies mentioned above are correlative. The relationship
between higher fungal biomass and lower N losses has never been
tested experimentally. With the increasing interest in soil-based
ecosystem services and the sustainable management of soils, the
demonstration of such a relationship could have implications for
agricultural management: promoting agricultural soils with higher
fungal biomass would contribute to reduction of N losses, which are
known to cause eutrophication of ground- and surface water as
well as global warming and atmospheric pollution (Tilman, 1999).

Several mechanisms have been proposed to underlie this
assumed negative relationship between fungal biomass and N los-
ses. First, fungal-dominated food webs have been shown to have
lower rates of gross N mineralization (Hégberg et al., 2007). Fungi
assimilate more carbon per unit substrate decomposed than
bacteria (Holland and Coleman, 1987), although some recent papers
question this idea (Six et al., 2006; Thiet et al., 2006). Carbon (C) and
N assimilation are coupled stoichiometrically (Hessen et al., 2004),
but because of their higher C/N ratio (Van Veen and Paul, 1979), even
if they are more efficient at assimilating C, fungi need to assimilate
less N than bacteria. On the other hand, fungi grow on more recal-
citrant substrates (with higher C/N ratios) that contribute less to N
mineralization, and are able to use them more efficiently than
bacteria (Hunt et al., 1987). Furthermore, fungi can access spatially
separated recalcitrant substrates and inorganic N simultaneously
with their extensive hyphal networks and thus immobilize readily
available N (Frey et al., 2003; Holland and Coleman, 1987). Although,
in general, fungal-dominated systems are assumed to have higher
immobilization of N than bacterial-dominated systems (Schimel
and Bennett, 2004), experimental confirmation is mostly lacking.
It has been shown, though, that microbes in extensively managed
grasslands, with a (presumed) larger proportion of fungi relative to
bacteria, immobilize more N than their more intensively managed,
bacterial-rich, counterparts (Bardgett et al., 1993, 2003). Because
fungal hyphae are more persistent in the soil than bacterial cells
(Amelung et al.,2002; Martin and Haider, 1979; Solomon et al., 2001,
but see De Vries et al., 2009), N captured in fungal hyphae forms
a more stable N pool in the soil and is less easily remineralized than
N in bacterial cells. Adding to this, because of the higher C/N ratio of
fungi coupled with the smaller biomass and lower turnover rates of
fungal-feeding fauna than their bacterial-feeding counterparts,
grazing on fungi releases less N than grazing on bacteria (Chen and
Ferris, 2000; De Ruiter et al., 1993).

Second, fungi can increase aggregate formation in the soil by
entangling soil particles with their hyphae and by excreting extra-
cellular polysaccharides and proteins that glue together soil particles
(Ritz and Young, 2004). Especially the abundance of arbuscular
mycorrhizal fungi (AMF), which (almost) exclusively produce
glomalin, has been found to be closely correlated with soil aggre-
gation and carbon sequestration (Wilson et al, 2009). As soil
aggregation protects detritus from microbial degradation, increased
aggregation results in lower carbon, and thus N, mineralization rates
(Rillig et al., 2007). On top of this, it has been suggested that in N rich
micro sites, mycorrhizal fungi may be the agents performing the first

step in mineralization: the release of dissolved organic N (DON) by
depolymerization of organic matter (Schimel and Bennett, 2004).

A third mechanism concerns another role of AMFE. Arbuscular
mycorrizal fungi can, in addition to their effect on aggregate
formation, also directly affect N cycling. Although their contribution
to decomposition is much smaller than that of decomposer fungi
(Hodge et al., 2001), they can enhance plant uptake of inorganic and
organic N (Hodge et al., 2001; Madder et al., 2000). This increased
plant N uptake could hypothetically reduce leaching losses of N
(Smith and Read, 1997). However, N addition often suppresses root
biomass and percentage of root colonization by AMF (Staddon et al.,
2004) and, unlike ectomycorrhizal fungi, AMF are thought to play
aminor role in plant N uptake in N rich systems. Still, Van der Heijden
(2010) showed that microcosms with AMF had slightly lower
ammonium leaching than microcosms without fungi, although
differences were much larger and more significant for phosphorus
losses. In addition, Tu et al. (2006) showed that AMF increased plant
biomass °N of wild oat by 125% and decreased soil inorganic N by
20%. In addition to increasing plant N uptake, AMF can also take up
considerable amounts of N for their own use. However, in systems
that are not limited by N and P, plants reduce their belowground C
allocation, thus reducing AMF biomass (Johnson, 2010).

Each of these three mechanisms, or any combination, could
underlie the suggested negative correlation between fungal
biomass and N losses. However, because a high fungal biomass is
a characteristic of systems with low nutrient availability, it is not
only almost impossible, but also not realistic, to disentangle these
mechanisms from the system that they are inherently linked to.
Therefore, we used two soils from one field experiment in which we
have monitored fungal and bacterial biomass for years. Although
these two soils have had widely differing fungal biomass for years as
aresult of different inputs of farm yard manure, other soil properties
were very similar. To test whether fungal-dominated soils indeed
show lower N losses, and to explore the mechanisms involved, we
performed a factorial experiment in which we used these two soils
with two levels of fungal biomass and two levels of fertilization.
Thus, we determined N losses from soils with high and low fungal
biomass after addition of an equal amount of inorganic fertilizer, as
well as from unfertilized controls. In addition, we did an experiment
adding labeled N to the same soils, tracing >N in leachates, soil,
plants and microbial biomass.

2. Materials and methods
2.1. Sampling and experimental design

We collected soil samples from two grass—clover plots differing
in fungal biomass from an experimental field trial at Heino, the
Netherlands (52°25’ north and 6°15’ east). The trial was established
in 2001 and the humid sandy soil was classified as a gleyey sand
with a semi-permeable loam horizon at 70—80 cm (for a detailed
description of the field trial see De Vries et al. (2006)). The difference
in fungal biomass between the two soils resulted from a long-term
(six year) difference in fertilization rate (40 vs. 80 kg Nha 'y~ ' as
farm yard manure) (De Vries et al., 2006). Both soils received
additional P and K fertilization as P05 (107 kg ha~! y~1) and K0
(372 kg ha~! y~1). Soil properties other than fungal and bacterial
biomass, including concentrations of mineral N, did not differ
significantly (Table 1). Differences in fungal biomass between the
two soils were up to a factor two and had been consistent for more
than five years (Fig. 1); both levels of fungal biomass were within the
range commonly found in Dutch agricultural grasslands (De Vries
et al,, 2007). In an earlier (pilot) experiment, we found that after
the addition of NH4NO; (equivalent to 30 kg N ha~!) the two soils
differed in their N leaching (Fig. 2).



ET. de Vries et al. / Soil Biology & Biochemistry 43 (2011) 997—1005 999

Table 1
Soil properties of the two soils used for the factorial experiment.
Low fungal High fungal
biomass biomass
(80 kg N ha™1) (40 kg N ha™1)
Production (kg N ha~')? 332 317
Total production (t dm ha=')? 11.4 10.2
Clover production (t dm ha=!)? 5.94 5.44
PH (KCI)? 45 43
Organic matter % (loss on ignition)* 53 5.5
Bulk density (g cm ) 1.30(0.01) 1.34(0.01)
Total soil N (g kg™1!) 2.46 (0.08) 2.66 (0.07)
Total soil carbon (g kg™ ') 26.3 (0.9) 28.5(0.7)
Soil mineral N Sept. 2006 (mg kg~ ') 2.83(0.05) 3.31(0.19)
Soil mineral N Nov. 2007 (mg kg~!) 2.39 (0.05) 1.60 (0.05)

2 Values represent single observations (bulk samples, 50 cores from each plot).
Other values represent means (s.e.m.).

2.1.1. Main experiment

In November 2007, 48 intact soil columns (12 cm diam., 30 cm
depth) with herbage were collected from both fields and incubated
in the greenhouse for 4 weeks (20 °C, 16 h daylight). After clipping
the herbage and covering the bottom of the columns with a 1 mm
nylon mesh, half of the columns received fertilizer as NH4NO3
solution (34 mg N, equivalent to 30 kg N ha™!). At the start of the
experiment, each treatment had 12 replicates. Columns were
arranged in a factorial randomized complete block design and
placed on top of a container to allow for the collection of leachates.
After 3 and 29 days of incubation, three columns of each treatment
combination were harvested to determine actual denitrification
(see below). All columns were watered weekly (350 ml, equivalent
to 30 mm rainfall) with demineralized water for 4 weeks, and N
leaching and N,O emissions were measured at regular intervals. At
the end of the 4-week experiment, the six remaining columns of
each treatment were harvested destructively and analyzed for
fungal and bacterial biomass and N pools.

2.1.2. >N experiment
In March 2008, we took an additional 12 columns (6 from each
plot) to determine the fate of added fertilizer N. Columns were
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Fig. 1. Fungal biomass throughout the years in the two soils used for the factorial
experiment. Bars represent single observations (bulk samples, 50 cores from each
plot). Abbreviations: Low F, low fungal biomass soil; High F, high fungal biomass soil.
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Fig. 2. Pilot experiment: cumulative amounts of N lost after N fertilization in low vs.
high fungal biomass soil, using intact soil columns. Symbols represent means =+ 1 s.e.m.
(n = 6). Abbreviations: Low F fert., low fungal biomass fertilized; High F fert., high
fungal biomass fertilized.

treated similarly as the main experiment. After addition of
I5NH{’NO;3 (98.24% enriched, equivalent to 30 kg ha~'), columns
were leached weekly and harvested destructively 2 weeks after N
addition, when N pools and their °N enrichment were measured.

2.2. Fungal and bacterial biomass

Microscopic slides were prepared as described by Bloem and Vos
(2004). Slides for counting fungi were stained with Differential
Fluorescent Stain (DFS) solution (3.5 g L~ ! europium chelate (Kodak
cat no. 1305515, Eastman Fine Chemicals, Rochester NY, USA) and
50 mg L~! fluorescent brightener, C4oH42N12001052 Nas (FW 960.9,
Fluostain I, cat no. F0386, Sigma Chemical Co., St LouisMD, USA) in
50% ethanol). Hyphal length was measured using an epifluor-
escence microscope at 400 x magnification. Total hyphal length was
calculated using the grid intersection method (Bloem et al., 1995).
Biovolume was calculated using the equation V = (w/4)WA(L — W/3),
where W = width (um) and L = length (um). Fungal biomass was
calculated assuming a mean hyphal diameter (width) of 2.5 pm and
a specific carbon content of 1.3 x 10~ '3 g C um—3 (Bakken and Olsen,
1983; Van Veen and Paul, 1979).

Microscopic slides for determination of bacterial numbers were
prepared in the same way as slides for fungal counting, except that
bacterial slides were stained with the fluorescent protein dye
5-(4,6-dichlorotriazin-2-yl) aminofluorescein. Bacterial numbers,
cell volumes and number of dividing cells were measured auto-
matically with a confocal laser-scanning microscope (Leica TCS
SP2) combined with image analysis software (Leica Qwin Pro) as
described by Bloem et al. (1995). Bacterial biomass (C) was esti-
mated from the biovolume using a specific carbon content of
3.1 x 10713 g C um3 (Fry, 1990).

2.3. Aggregate-size distribution
After gently passing moist soil through an 8 mm sieve soil

samples were air dried. Water-stable aggregates were isolated using
the wet-sieving method as described by Elliott (1986). Briefly, 100 g
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air dried soil was submerged for 5 min in deionized water on top of
22000 um-mesh sieve. Subsequently, the sieve was moved in an up-
and-down motion 50 times within 2 min, after which the >2000 pm
aggregates were backwashed, oven dried at 50 °C until no water
remained, and weighed. Soil and water that passed the sieve were
transferred onto the next sieve with a finer mesh. This procedure
was repeated with a 250 pm and a 53 um sieve to yield aggregate
fractions of >2000 pm, 250—2000 pm, 53—250 um, and <53 pm.

2.4. N losses and pools

Leachates were collected one day after irrigation and colori-
metrically analyzed for NO3 and NHZ. After oxidation with KS,0g,
total soluble N was analyzed and dissolved organic N (DON) was
calculated by subtracting the amount of inorganic N from total
soluble N. Total amounts of NO3, NHZ and DON leached per column
were calculated by multiplying concentrations with volumes of
leachates.

During the first week, N>O emissions were measured daily,
while from the second week on, N;O emissions were measured
three times a week. Columns were closed with an air-tight PVC lid.
After 30 min, N,O concentrations in the headspace of the columns
were measured with a photo-acoustic infra-red gas analyzer
(Innova1312). The gas analyzer was equipped with filters to mini-
mize interference by CO, (a soda-lime scrubbing filter), and N,O
concentrations were internally corrected for measured CO,
concentrations and water vapor. The assumption of linear increase
during the measurement period under our experimental conditions
was checked several times.

Actual denitrification at the start and at the end of the incuba-
tion was measured by acetylene inhibition (Robertson and Tiedje,
1987). Briefly, intact soil columns were divided into three equal
parts of 10 cm height, and put into air-tight containers (7.5 L) after
which acetylene was added to a 5% concentration (v/v). Twenty-
four and 48 h after acetylene addition, N,O concentrations in
containers were measured with a photo-acoustic infra-red gas
monitor as described above. We calculated cumulative denitrifi-
cation as follows: we calculated N,O/N, ratios for each of the four
treatments separately, using N,O production rates and actual
denitrification rates on the same day at the start and at the end of
the experiment. We assumed that for each treatment, these N,O/N;
ratios changed linearly over the course of the experiment. Thus, for
each treatment, we interpolated these N,O/N ratios, resulting in
a linear function that predicted N>O/N, ratios at every date we
measured N,O production. We then used those ratios combined
with actual N,O measurements to calculate total denitrification at
each sampling date, which we then used to calculate cumulative
denitrification.

Microbial biomass N and '°N were determined using the fumi-
gation-extraction method (Brookes et al., 1985). Briefly, 5 g of soil
was fumigated with CHCl; for 24 h at 20 °C. After removal of CHCls,
soluble N was extracted from fumigated and unfumigated samples
with 0.5 M K;SO4 for 30 min on an orbital shaker. DON in the
extracts was converted to NHf and NO3 by persulfate digestion,
and the microbial N flush was converted to microbial biomass N
using a kgn factor of 0.55 (Brookes et al., 1985). In the second
experiment, after persulphate digestion, microbial biomass >N was
determined by diffusing ammonium and nitrate onto an acid
treated filter wrapped in teflon tape. The sample was subsequently
analyzed for "N enrichment on an isotope ratio mass spectrometer
(ANCA-IRMS, Europa Scientific Integra, UK) interfaced with a CN
sample converter at the UC Davis Stable Isotope Facility, with
atmospheric N3 as a standard (0.3663% atomic excess).

Herbage was clipped and removed from the columns at weekly
intervals during the 4-week incubation. Total plant herbage was

dried at 70 °C, weighed, milled, and analyzed for total N and °N
content using a C/N analyzer as described above. In the "N
experiment, in addition to above ground plant material, roots were
washed, dried, milled and analyzed for total and N content.
Total N content in the aggregate-size fractions obtained by wet-
sieving were also analyzed using a C/N analyzer. Soil inorganic N
was extracted by 1 M KCl and measured using Skalar segmented
flow analysis (Breda, the Netherlands). Soil organic matter N was
calculated as total N minus inorganic N and microbial N.

2.5. Statistical analysis

All data were checked for normality and homogeneity of vari-
ance, and log-transformed if necessary. Outliers were determined
using Cook’s distance and deleted if there were a priori reasons to
do so—this was the case for one sample from the fertilized, high
fungal biomass treatment. Main and interaction effects of fungal
biomass and fertilizer addition were assessed by two-way analysis
of variance, with the exception of N leaching and N0 fluxes, which
were assessed by two-way repeated measures ANOVA. All statis-
tical tests were done using the statistical package SPSS (SPSS Inc.,
Chicago, IL).

3. Results
3.1. Fungal and bacterial biomass in main experiment

Fungal biomass increased in all treatments during incubation
(Fig. 3A). The increase was highest in the high fungal biomass soil
(F119 = 56.29, P < 0.001), and was reduced by fertilization
(F119 = 36.93, P < 0.001). The negative effect of fertilization on fungal
growth was stronger in the high fungal biomass soil than in the low
fungal biomass soil (fungal biomass x fertilization interaction
Fi19 = 8.81, P = 0.008), which resulted in convergence of fungal
biomass in the unfertilized low fungal biomass soil and the fertilized
high fungal biomass soil (Fig. 3A). Contrastingly, bacterial biomass
decreased during incubation (Fig. 3B). Bacterial biomass did not
differ significantly between the low and high fungal biomass soil at
the start of the experiment, nor after 4 weeks of incubation. Fertil-
ization differentially affected bacterial biomass in the low and in the
high fungal biomass soil (fungal biomass x fertilization interaction
Fi19 = 4.79, P = 0.041). The change in fungal/bacterial biomass ratio
(F/B ratio; data not shown) was largely driven by changes in fungal
biomass. The F/B ratio was highest in the high fungal biomass
soil (Fj19 = 16.08, P = 0.001), was reduced by fertilization
(F119 = 9.17, P = 0.007), and the negative effect of fertilization on the
F/B ratio was greatest in the high fungal biomass soil (fungal
biomass x fertilization interaction Fj19 = 7.63, P = 0.012).

3.2. N losses in main experiment

N0 emission (F130 = 7.36, P = 0.011) (Fig. 4A, Table 2) and
cumulative denitrification (Fy3; = 6.47, P = 0.016, Table 2) were
lowest in the high fungal biomass soil. Fertilizer addition increased
N>O emission (F130 = 5.60, P = 0.025) (Fig. 4A, Table 2) and deni-
trification (F; 31 = 21.56, P < 0.001, Table 2) in both soils. We found
a negative relationship between fungal biomass and NO emission
in the unfertilized treatments, but not in the fertilized treatments
(Fig. 5A). Over the whole experimental period, NoO emissions were
positively correlated to leachate NO3 concentrations (R? = 0.147,
P < 0.001).

The addition of fertilizer had a differential effect on mineral N
leaching in the low and high fungal biomass soil (fungal
biomass x fertilization interaction Fy 31 =11.47, P=0.002). In the high
fungal biomass soil, fertilization did not increase leaching of mineral
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N, whereas in the low fungal biomass soil, leaching was increased
more than threefold (Fig. 4B). N leaching did not differ between the
unfertilized controls of both soils (Fig. 4B, Table 2). There was
a negative correlation between fungal biomass and N leaching in the
fertilized treatments, but not in the unfertilized treatments (Fig. 5B).
Organic N leached was higher in the high fungal biomass soil than in
the low fungal biomass soil, but was not affected by fertilization
(Table 2). Organic N leaching only formed a small part of the total
amount of N lost (Table 2). Apart from day 1, volumes of leachates did
not differ between the two soils (data not shown).

Total N lost was highest in the fertilized treatments. After the
addition of fertilizer, the amount of N lost was greatest in the low
fungal biomass soil (Table 2).

3.3. N pools
3.3.1. Main experiment

Plant N uptake in shoots did not differ among the treatments
(Table 2); also mineral N in the soil columns at the time of sampling
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did not differ between the low and the high fungal biomass soil, nor
was it affected by fertilization. There was, however, an interaction
effect of fungal biomass and fertilization on soil mineral N: the
positive effect of fertilization on mineral N was more pronounced in
the high fungal biomass soil than in the low fungal biomass soil
(Table 2). Microbial biomass N at the end of the incubation was
significantly higher in the low fungal biomass soil than in the high
fungal biomass soil (Table 2), and was not affected by fertilization.

The two soils neither differed in their micro- or macro-aggre-
gate-size distribution, nor in their aggregate-associated carbon and
N (data not shown).

3.3.2. >N experiment

Microbial biomass N was generally lower in this additional
experiment (Table 3) than in the main experiment, probably
because soil columns were taken in late winter instead of late
autumn. Fungal biomass was 55 + 6 and 92 4 10 pg C g~ ! for the low
and high fungal biomass soil, respectively; bacterial biomass was
36 + 4 and 28 + 4 for low and high fungal biomass soil. Leaching was

B 14
——Low F fert.
12 —— Low F unfert.
--*O-- HighF fert.
= --:O-- High F unfert.
© 10
<
)]
X
~ 8
ko]
o
<
S s
o
£ 4
£
z
2
0
1 7 16 22 29
Days

Fig. 4. Cumulative amounts of N lost following different N fertilization treatments in low vs. high fungal biomass soil. A, N,O evolved. B, mineral N leached. Symbols represent
means + 1 s.e.m. (n = 9). Abbreviations: Low F fert., low fungal biomass fertilized; Low F unfert., low fungal biomass unfertilized; High F fert., high fungal biomass fertilized; High F

unfert., high fungal biomass unfertilized.
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Table 2
Fertilization effects after 4 weeks on N pools and loss pathways (kg N ha~!) in low vs. high fungal biomass soil.
Mineral N Organic N N—-N,0 Estimated Total N lost? Shoot N Soil mineral N Microbial
leached leached evolved denitrification uptake biomass N
Low fungal biomass
Fertilized 11.9 (1.0) 1.5 (0.1) 1.3(0.2) 8.7 (1.2) 22.0 (0.8) 314(25) 163 (1.4) 243 (8.3)
Unfertilized 3.9(1.0) 13(0.1) 0.7 (0.1) 3.4 (0.5) 8.6 (1.5) 294 (59) 18.1(1.7) 248 (13.3)
High fungal biomass
Fertilized 6.4 (0.9) 22(0.2) 0.9(0.2) 6.1 (1.6) 14.6 (2.3) 306 (43) 19.3(3.0) 218 (15.4)
Unfertilized 45(0.8) 23(0.1) 0.4 (0.1) 1.9 (0.5) 8.8(1.2) 32.1(56) 13.0(1.2) 217 (10.8)
F (P-value)
Fungal biomass 1.34 (0.3) 36.79 (<0.001)  5.81(0.022)  6.47 (0.016) 323(0.098)  0.02(09) 0.78(0.4) 5.36 (0.032)
Fertilization 27.10 (<0.001)  0.07 (0.8) 14.05 (0.001) 21.56 (<0.001) 38.66 (<0.001) 0.47 (0.5) 1.55(0.2) 0.02 (0.9)
Fungal biomass x fertilization 7.90 (0.008) 1.48 (0.2) 0.05 (0.8) 0.12 (0.7) 4.12 (0.033) 032 (0.6) 4.74 (0.042) 0.05 (0.9)

Values in the upper part of the table represent means (s.e.m.; n = 6).

@ Total N lost is the sum of mineral N leached, organic N leached, and estimated denitrification.

higher in the high fungal biomass soil: Two weeks after the addition
0f 30 kg ha~! °N-labeled fertilizer, the amount of mineral N leached
was almost 3-fold higher in the high fungal biomass soil than in the
low fungal biomass soil (Table 3). Leaching of >N was 4-fold higher.

Microbial biomass N was 19% higher in the high fungal biomass
soil, while N immobilized in this pool was twice as high in the
high fungal biomass soil. However, the amounts of >N immobilized
were small relative to the amounts found in plants and soil organic
matter (Table 3). Thus, microbial biomass was not a major sink of
15N, 15N recovery in microbial biomass was 2.9%, vs. 22.5 and 16.3%
in the plants and the soil organic matter, respectively, in the high
fungal biomass soil. In this soil, due to much lower root biomass N,
total plant N was much lower (171 vs. 269 kg N ha~') but the °N
percentage tended to be higher. The result was a lower PN
immobilization in the plants in the high fungal biomass soil (6.8 vs.
7.4 kg >N ha~1). Total N recovery was considerably higher in the
high fungal biomass soil (59 vs. 45%). This suggests that in the low
fungal biomass soil, which showed lower N leaching, more BN was
lost by denitrification (which was not measured in the additional
experiment). When leaching was subtracted, >N recovery in soil
plus plant was similar in both soils: 44 and 41% in the high and low
fungi soil, respectively.
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4. Discussion

Our main experiment, and our pilot experiment, showed that N
losses were lower in the soil characterized by a higher fungal
biomass. The key finding of the main experiment is that the addi-
tion of inorganic N did not increase N leaching in the high fungal
biomass soil, whilst in the low fungal biomass soil N leaching
increased threefold compared to the unfertilized control (Fig. 4A).
N,O emission and total denitrification were lower in the high
fungal biomass soil irrespective of the addition of inorganic N
(Fig. 4B). However, when we did an additional experiment using
5N to unravel the mechanism behind these lower N losses in the
high fungal biomass soil, we found contrasting results: N leaching
tended to be higher in the high fungal biomass soil.

In the introduction we listed three potential mechanisms which
might explain the negative relationship between fungal biomass
and N losses: fungal-dominated soils could have (1) lower gross N
mineralization and higher immobilization of inorganic N into
microbial biomass; (2) increased protection of organic matter
because of increased aggregate formation, and (3) increased plant N
uptake through arbuscular mycorrhizal fungi. Because aggregate-
size distribution did not differ between treatments, potential
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Fig. 5. Relationships between fungal biomass and total amounts of N lost. A, relationship between fungal biomass and total N,O emissions in fertilized and unfertilized treatments.
The correlation was significant for the unfertilized treatments (dashed line, F; 10 = 16.79, P = 0.002). B, relationship between fungal biomass and mineral N leaching in fertilized and
unfertilized treatments. The correlation was significant for the fertilized treatments (solid line, F;9 = 20.59, P = 0.001). Symbols represent single observations.
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Table 3

Total N pools, their '°N percentage, >N (kg N ha~1), and '>N recoveries (%), 2 weeks after N addition in low vs. high fungal biomass soil. Values represent means (s.e.m.; n = 6).

Mineral N leached Soil mineral N Microbial biomass N Shoot N Root N Total plant N Org. matter N
Low fungal biomass
Total N (kg N ha 1) 2.2(0.8) 30.9 (8.3) 106 6 (6.7) 37.9(5.2) 230.7 (28.7) 268.5(31.6) 8032 (497)
15N (% of total N) 25.2 (10.9) 0.9 (0.1) 4(0.1) 8.4(0.8) 16 (0.2) 6 (0.3) 0.04 (0.01)
15N (kg N ha™") 1.1 (0.5) 0.3(0.1) 5(0.1) 3.4(0.3) 0(0.3) 5 (0.4) 4,09 (1.05)
15N Recovery (%) 3.5(1.8) 1.2 (0.4) 6 (0.4) 115 (1.1) 134(0 9) 249 (1.3) 13.6 (3.5)
High fungal biomass
Total N (kg N ha 1) 5.8 (2.0) 30.5(13.2) 1273( 1) 53.4(15.8) 117.6 (23.2) 171.1(386) 8749 (366)
15N (% of total N) 485 (12.8) 2.0(0.3) 6 (0.1) 104 (3.0) 3.0(1.0) 4 8 (1.3) 0.05 (0.00)
5N (kg N ha™1) 4.5 (1.7) 0.7 (0.3) 9(0.2) 3.9(04) 2.9(0.2) 8 (0.5) 4.90 (0.54)
15N Recovery (%) 15.1 (5.8) 23(1.0) 9 (0.5) 12.9(1.5) 9.6 (0.8) 225 (1.8) 163 (1.8)
P-value (t-test)
Total N 0.07 0.49 0.05 0.19 0.006 0.04 0.14
5N % 0.10 0.006 0.08 0.27 0.12 0.08 0.25
BN 0.05 0.16 0.04 0.22 0.006 0.04 0.26
15N Recovery % 0.04 0.15 0.04 022 0.005 0.16 025

mechanism (2) can be rejected. This leaves mechanisms (1) and (3)
to be considered.

Some of our observations support mechanism (1). The lower
N0 emission (Fig. 4A) and total denitrification (Table 2) in the high
fungal biomass soil, both with and without fertilizer addition,
might be explained by a lower NO3 availability in the high fungal
biomass soil due to lower gross N mineralization. This would also
explain lower NO3 leaching (Fig. 4B). There was a negative rela-
tionship between fungal biomass and N;O production in the
unfertilized treatments, which is in sharp contrast with findings of
fungi dominating denitrification (Crenshaw et al., 2008; Laughlin
and Stevens, 2002; McLain and Martens, 2006). However, this
negative relationship between fungal biomass and N0 production
was blurred after fertilizer addition (Fig. 5A). This shows that NO3
availability was a larger control on N,O emissions than microbial
community composition (Cavigelli and Robertson, 2000). Although
we did not measure denitrification in the 1°N experiment, we found
a lower recovery of N in the low fungal biomass soil than in the
high fungal biomass soil (45 vs. 59%, respectively), which indicates
higher denitrification in the low fungal biomass soil. Recovery of
15N was low in both low and high fungal biomass soil, indicating
high N losses through denitrification in this experiment. A possible
explanation for high denitrification rates might be that columns
were collected at the end of the winter when the soil was partly
frozen. This resulted in high moisture content and slow water
infiltration rates during the two-week experiment, probably
creating anaerobic conditions favoring denitrification.

The addition of mineral fertilizer in the main experiment had
a differential effect on mineral N leaching in the low and high
fungal biomass soil: in the high fungal biomass soil, fertilization did
not increase leaching of mineral N, whereas in the low fungal
biomass soil, leaching increased more than threefold (Fig. 4B). This
suggests that added N was either immobilized into microbial bio-
mass—which was supported by the negative relationship between
mineral N leaching and fungal biomass in the fertilized treatments
(Fig. 5B)—or taken up by plants in the high fungal biomass soil.
There was no relationship between microbial biomass N and N
leaching however, nor was microbial biomass N affected by fertil-
ization (Table 2). In the main experiment, the amount of mineral N
added (30 kg N ha~!) and the amounts of total N lost were small
compared to the amount of N in microbial biomass (over
200 kg N ha~1). Therefore immobilization in microbial biomass was
hard to measure. Shoot N uptake equaled 30 kg N ha~! but was the
same in all treatments and could not explain the difference in N loss
between the low and high fungal biomass soil.

In contrast to both the pilot and the main experiment, lower N
leaching was found in the low fungal biomass soil after addition of
mineral N in the >N experiment (Table 3). In fact, mineral N
leached in the high fungal biomass soil was similar to that in the
main experiment (6 kg N ha—') whereas mineral N leaching in
the low fungal biomass soil was lower than in the main experiment
(2 vs. 8 kg N ha~! in 2 weeks) (Fig. 4B and Table 3). Although
a 2-fold higher immobilization of N into microbial biomass was
found in the high fungal biomass soil, only 3% of total >N was found
in the microbial biomass 2 weeks after adding N. Microbial biomass
has been shown to be a significant short-term sink for added N,
but the peak of immobilization occurs within days after N addition
(Bardgett et al., 2003; Dunn et al., 2006; and reviewed by Kaye and
Hart, 1997; Recous et al., 1990). Since we measured two weeks after
N addition, the N immobilized in microbial biomass might have
been remineralized and incorporated into other soil N pools. In any
case, our addition experiment did not support microbial N immo-
bilization as an important mechanism for lower N losses. Also, the
mechanism of improved plant N uptake through AMF (mechanism
3) is not supported by the results of the additional experiment
because there was no improved plant N uptake in the high fungal
biomass soil. Due to the lower root biomass, even less >N was
recovered in plant material in the high fungal biomass soil (6.8 vs.
7.5 kg 1°N ha1). In addition, the role of AMF was probably limited
because both soils received farm yard manure and additional P and
K fertilizer.

One possible explanation for the discrepancies between the
results from our main and pilot experiment on the one hand, and the
I5N experiment on the other hand, might be the different experi-
mental conditions due to different field sampling times (end of
autumn in main and pilot experiment, vs. end of winter in N
experiment). Biomass of fungi and bacteria generally increases
toward autumn, and declines toward the end of winter (Zwart et al.,
1994), which is supported by the lower biomass of fungi and
bacteria in the >N experiment. Moreover, fungal biomass has been
shown to remain low well into spring, whereas bacterial biomass
has been shown to increase again in February (Bloem et al., 1994;
Zwart et al., 1994). Thus, presumably, fungi (including AMF) would
have been relatively more active in our main and pilot experiment
than in our >N experiment, whereas bacterial activity would have
been more important in the 1°N experiment. In addition, the shorter
duration might have prevented fungi to grow and exert an influence
on N cycling to the same extent as in the main experiment.

In the main experiment, fungal biomass increased during the
incubation, whereas bacterial biomass decreased (Fig. 3). Apparently,
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conditions were in favor of fungi, supporting our (in the previous
paragraph) proposed idea that fungi were relatively influential in
the main experiment. Fertilizer addition caused fungal biomass in
the high fungal biomass soil to converge with fungal biomass in the
unfertilized low fungal biomass soil (Fig. 3A). So, although differ-
ences in fungal biomass between the two soils had been consistent
for 5 years in the field (Fig. 1), these differences were neutralized
within 4 weeks after a modest (30 kg N ha') mineral fertilizer
addition. Negative effects of inorganic N on fungi have been mostly
attributed to changes in vegetation and organic matter characteris-
tics (Bardgett et al., 1999; Donnison et al., 2000). Because of the short
time course of the negative effect on fungal growth of inorganic N
addition in this experiment, our results rather suggest a direct
negative effect on fungal growth. It is not clear why inorganic N
would have such an effect on fungal growth. It has been suggested
that inorganic N represses enzyme activity (Fog, 1988).

N addition increased neither plant biomass nor fungal and
bacterial biomass, which indicates that our grassland soils were not
N limited. Still, in the main experiment, N retention was higher in
the high fungal biomass soil than in the low fungal biomass soil.
Even though the two soils did not differ in most parameters rele-
vant for N cycling, the lower farm yard manure inputs of the high
fungal biomass soil inevitably will have changed organic matter
quality, reduced N availability and thus selected for a more fungal-
dominated microbial community. This fungal-dominated microbial
community might in turn have reduced N availability further
(Wardle et al., 2004a). In addition, physical properties might have
affected leaching rates, although we found no differences in
aggregate-size distribution, bulk densities, and volumes leached.
Thus, we propose that the lower manure inputs of the high fungal
biomass soil have created a set of ecosystem properties that retain
N better. Summarized, our results show that higher fungal biomass
is probably not the direct cause of higher N retention, but rather an
indication of low nitrogen availability.

In conclusion, we are offering a first attempt to answer the key
question whether fungal-dominated systems have lower N losses.
Our results confirm that a higher fungal biomass can be considered
as an indicator of higher nutrient retention in soils. In our grassland
soils the higher nitrogen retention was probably the result of lower
farm yard manure inputs (40 vs. 80 kg N ha~! yr~1) in the past six
years. Interestingly, in our soils with grass-clover, above ground
production was maintained, not only in our 4-week experiment
(Table 2, plant N uptake), but also in the field (De Vries et al., 2006).
The clover in the sward may have compensated for the reduced
fertilization; it is well documented that N fixation by legumes
decreases with increasing N fertilization (Carlsson and Huss-Danell,
2003). Thus, increased nutrient retention does not necessarily
result in lower crop production.

More research is needed to understand why soils with a higher
fungal biomass can reduce N losses. If this is a general phenomenon
as has been widely assumed so far, testing the relationship between
fungal biomass and N losses on longer timescales, and across more
pairs of soils or across a gradient of soils varying in fungal biomass
would be a way forward. In addition, more mechanistic studies
using sterilized soils reinoculated with different microbial
communities might provide more insight in the mechanisms
involved.
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