94 research outputs found
Comparison and verification of enthalpy schemes for polythermal glaciers and ice sheets with a one-dimensional model
The enthalpy method for the thermodynamics of polythermal glaciers and ice
sheets is tested and verified by a one-dimensional problem (parallel-sided
slab). The enthalpy method alone does not include explicitly the transition
conditions at the cold-temperate transition surface (CTS) that separates the
upper cold from the lower temperate layer. However, these conditions are
important for correctly determining the position of the CTS. For the numerical
solution of the polythermal slab problem, we consider a two-layer
front-tracking scheme as well as three different one-layer schemes
(conventional one-layer scheme, one-layer melting CTS scheme, one-layer
freezing CTS scheme). Computed steady-state temperature and water-content
profiles are verified with exact solutions, and transient solutions computed by
the one-layer schemes are compared with those of the two-layer scheme,
considered to be a reliable reference. While the conventional one-layer scheme
(that does not include the transition conditions at the CTS) can produce
correct solutions for melting conditions at the CTS, it is more reliable to
enforce the transition conditions explicitly. For freezing conditions, it is
imperative to enforce them because the conventional one-layer scheme cannot
handle the associated discontinuities. The suggested numerical schemes are
suitable for implementation in three-dimensional glacier and ice-sheet models.Comment: 16 pages, 8 figure
Present State and Prospects of Ice Sheet and Glacier Modelling
Since the late 1970s, numerical modelling has become established as an important technique for the understanding of ice sheet and glacier dynamics, and several models have been developed over the years. Ice sheet models are particularly relevant for predicting the possible response of ice sheets to climate change. Recent observations suggest that ice dynamics could play a crucial role for the contribution of ice sheets to future sea level rise under global warming conditions, and the need for further research into the matter was explicitly stated in the Fourth Assessment Report (AR4) of the United Nations Intergovernmental Panel on Climate Change (IPCC). In this paper, we review the state of the art and current problems of ice sheet and glacier modelling. An outline of the underlying theory is given, and crucial processes (basal sliding, calving, interaction with the solid Earth) are discussed. We summarise recent progress in the development of ice sheet and glacier system models and their coupling to climate models, and point out directions for future wor
Comparison of thermodynamics solvers in the polythermal ice sheet model SICOPOLIS
第6回極域科学シンポジウム[OM] 極域気水圏11月16日(月) 統計数理研究所 セミナー室2(D304
Estimating the ice thickness of mountain glaciers with a shape optimization algorithm using surface topography and mass-balance
We present a shape optimization algorithm to estimate the ice thickness distribution within a two-dimensional, non-sliding mountain glacier, given a transient surface geometry and a mass-balance distribution. The approach is based on the minimization of the surface topography misfit at the end of the glacier's evolution in the shallow ice approximation of ice flow. Neither filtering of the surface topography where its gradient vanishes nor interpolation of the basal shear stress is involved. Novelty of the presented shape optimization algorithm is the use of surface topography and mass-balance only within a time-dependent Lagrangian approach for moving-boundary glaciers. On real-world inspired geometries, it is shown to produce estimations of even better quality in smaller time than the recently proposed steady and transient inverse methods. A sensitivity analysis completes the study and evinces the method's higher susceptibility to perturbations in the surface topography than in surface mass-balance or rate facto
Recommended from our members
Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume
The growth and reduction of Northern Hemisphere ice sheets over the past million years is dominated by an approximately 100,000-year periodicity and a sawtooth pattern (gradual growth and fast termination). Milankovitch theory proposes that summer insolation at high northern latitudes drives the glacial cycles, and statistical tests have demonstrated that the glacial cycles are indeed linked to eccentricity, obliquity and precession cycles. Yet insolation alone cannot explain the strong 100,000-year cycle, suggesting that internal climatic feedbacks may also be at work. Earlier conceptual models, for example, showed that glacial terminations are associated with the build-up of Northern Hemisphere ‘excess ice’, but the physical mechanisms underpinning the 100,000-year cycle remain unclear. Here we show, using comprehensive climate and ice-sheet models, that insolation and internal feedbacks between the climate, the ice sheets and the lithosphere–asthenosphere system explain the 100,000-year periodicity. The responses of equilibrium states of ice sheets to summer insolation show hysteresis, with the shape and position of the hysteresis loop playing a key part in determining the periodicities of glacial cycles. The hysteresis loop of the North American ice sheet is such that after inception of the ice sheet, its mass balance remains mostly positive through several precession cycles, whose amplitudes decrease towards an eccentricity minimum. The larger the ice sheet grows and extends towards lower latitudes, the smaller is the insolation required to make the mass balance negative. Therefore, once a large ice sheet is established, a moderate increase in insolation is sufficient to trigger a negative mass balance, leading to an almost complete retreat of the ice sheet within several thousand years. This fast retreat is governed mainly by rapid ablation due to the lowered surface elevation resulting from delayed isostatic rebound, which is the lithosphere–asthenosphere response. Carbon dioxide is involved, but is not determinative, in the evolution of the 100,000-year glacial cycles
Bedrock topography reconstruction of glaciers from surface topography and mass-balance data
Three methods based on the three-dimensional shallow ice approximation of glacier flow are devised that infer a glacier's subglacial topography from the observation of its time-evolving surface and mass balance. The quasi-stationary inverse method relying on the apparent surface mass-balance description of the glacier's evolution is first exposed. Second, the transient inverse method that iteratively updates the bedrock topography with the surface topography discrepancy is formulated. Third, a shape optimization algorithm is presented. The aim of the paper is to collect these methods, analyze their differences, and identify what brings the sophistication of shape optimization for reconstructing subglacial topographies. The three methods are compared to the ice thickness estimation method (ITEM) on direct measurements on Gries glacier, Swiss Alps. The paper concludes with a detailed discussion on the sensitivity of the shape optimization method to the model parameters
Quantum-Phase Transitions of Interacting Bosons and the Supersolid Phase
We investigate the properties of strongly interacting bosons in two
dimensions at zero temperature using mean-field theory, a variational Ansatz
for the ground state wave function, and Monte Carlo methods. With on-site and
short-range interactions a rich phase diagram is obtained. Apart from the
homogeneous superfluid and Mott-insulating phases, inhomogeneous charge-density
wave phases appear, that are stabilized by the finite-range interaction.
Furthermore, our analysis demonstrates the existence of a supersolid phase, in
which both long-range order (related to the charge-density wave) and
off-diagonal long-range order coexist. We also obtain the critical exponents
for the various phase transitions.Comment: RevTex, 20 pages, 10 PostScript figures include
- …