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Estimating the ice thickness of mountain glaciers
with a shape optimization algorithm

using surface topography and mass-balance

Laurent Michel, Marco Picasso, Daniel Farinotti, Andreas Bauder,
Martin Funk and Heinz Blatter

Abstract. We present a shape optimization algorithm to estimate the ice thickness distri-
bution within a two-dimensional, non-sliding mountain glacier, given a transient surface
geometry and a mass-balance distribution. The approach is based on the minimization
of the surface topography misfit at the end of the glacier’s evolution in the shallow ice
approximation of ice flow. Neither filtering of the surface topography where its gradient
vanishes nor interpolation of the basal shear stress is involved. Novelty of the presented
shape optimization algorithm is the use of surface topography and mass-balance only
within a time-dependent Lagrangian approach for moving-boundary glaciers. On real-
world inspired geometries, it is shown to produce estimations of even better quality in
smaller time than the recently proposed steady and transient inverse methods. A sensitivity
analysis completes the study and evinces the method’s higher susceptibility to perturba-
tions in the surface topography than in surface mass-balance or rate factor.
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1 Introduction

Recently, inverse approaches that derive the glacier bed topography from sur-
face topography and mass-balance only in both steady and transient situations
were proposed [34]. These so-called Steady (SIM) and Transient Inverse Meth-
ods (TIM) are based on the Shallow Ice Approximation (SIA) [18] and repre-
sent an efficient way to reconstruct the subglacial topography in two dimensions.
In particular, neither surface filtering with a lower slope limit nor assumptions on
the basal shear stress are applied, contrary to most of the other existing methods
[13,20,30,38]. The SIM was inspired by a procedure used to reconstruct river beds
in the Shallow Water context [15]. While this method is more reliable and easily
implementable than a Shape Optimization Algorithm (SOA) [42] in the Shallow
Water Approximation, we will see that this is not the case anymore in the SIA. The
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TIM in turn found his basement in a work on the reconstruction of basal topogra-
phies of viscous, gravity-driven, steady flows [21].

Many scientists have already adopted optimal control approaches in glaciology
to determine basal sliding law and rheology coefficients [2,3,19,27,29,32,39,44]
that aim at minimizing the misfit between the computed and exact, or measured,
surface velocities with the help of two and three-dimensional flow models of ar-
bitrary order. On subglacial topography estimation with an SOA, the oldest con-
tribution we can think of is an interpolation method that seeks the best solution
fitting the measured data under the constraint that it also minimizes potential and
curvature [23]. Subsequent work on SOA that infer the ice thickness distribution
of a glacier is rather sparse but literature has lately become more abundant on
those that minimize the surface velocity misfit on steady geometries [33, 35]. The
most recent attempt we are currently aware of is a procedure that minimizes the
discrepancy between the actual ice thickness and the quasi-stationary SIA corre-
sponding value for a three-dimensional geometry, without direct consideration of
surface velocity data [11]. Basically, all existing SOA that solve this problem deal
with stationary or quasi-stationary geometries exclusively and use surface velocity
data most of the time.

The purpose of this paper is to demonstrate that the SIA can be inverted for the
glacier’s bedrock topography with an SOA in both steady and transient situations,
even if moving boundaries are taken into account, with only surface topography
and mass-balance data. Instead of locally reporting to the bedrock topography the
discrepancy between the computed and exact final surfaces after each iteration
in a fixed-point manner, as in TIM, we now propose to apply a more sophisti-
cated minimization algorithm to it. In practical applications, the exact is replaced
with the measured surface topography. The advantage of the new method is its
flexibility, as the involved Lagrangian can be easily modified to take additional
constraints into account. Moreover, it can incorporate sliding and be extended to
three space dimensions as well as higher order models. Last, it handles with the
same ease both steady and transient situations. While the validity of the SIA in the
case of Alpine glaciers is questionable, we, however, consider useful to test it for
ice thickness estimations since it is much easier to implement and less computer
memory demanding than the full-Stokes equations. Technically, this is because the
ice velocity can be differentiated directly with respect to the bedrock topography
in the SIA, while an additional dual problem for the velocity and pressure fields
has to be solved in the case of the Stokes equations.

The outline of the paper is as follows: first, we present the governing equation
of the two-dimensional SIA. Then, we describe our SOA in the continuous setting,
followed by its detailed space and time discretizations. The performance of the
method is compared with the results obtained with the SIM and TIM. Finally,
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we expose a sensitivity analysis where the high susceptibility to perturbations in
surface topography and the low susceptibility to perturbations in surface mass-
balance are brought forward, as was the case with SIM and TIM. Additionally, we
show that the method is only slightly sensitive to the rate factor, which is important
in the Shallow Ice model and usually subjected to errors in practical applications.

2 Forward model

The notations are those introduced in [34]. We consider a two-dimensional lon-
gitudinal section of a non-sliding glacier along one of its flow lines, defined in
a Cartesian system of axes .x; z/, over a spatial domain � D Œx1; x2� (see Fig-
ure 1 (a)), from initial time ti to final time tf . Its bed and surface topographies are
denoted by b and s respectively, the surface mass-balance by B, and the ice thick-
ness by H D s � b. To simplify the presentation, B will be a function of space
only in what follows. At initial time ti , the glacier surface topography is si and
evolves towards topography sf during the time interval Œti ; tf � (see Figure 1 (b)).

x1 x2
x

z

surface si at time ti

surface sf at time tf

bedrock b

Figure 1. Glacier in the Cartesian system of axes .x; z/. The surface si at time ti
evolves towards surface sf during the time interval Œti ; tf �.

We will focus on the SIA of ice dynamics, that is an approximation of order
zero of the flow, where the transient forward problem can be cast into: given a
bedrock b, an initial surface si , and a surface mass-balance B, find the ice thick-
ness H W Œx1; x2� � Œti ; tf �! R such that8̂̂̂̂
<̂
ˆ̂̂:
@H

@t
D

@

@x

�
D.b;H /

@.b CH /

@x

�
CB; x1 < x < x2; ti < t < tf ;

H D si � b; x1 < x < x2; t D ti ;

H D 0; x D x1; x2; ti � t � tf ;

(2.1)
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where D is the diffusivity

D.b;H / D �HnC2

ˇ̌̌̌
@.b CH /

@x

ˇ̌̌̌n�1

; (2.2)

n is Glen’s flow law exponent [16], and � the ice diffusion parameter, defined with

� D 2
A.�g/n

nC 2
; (2.3)

where � is the ice density, A the rate factor, and g the acceleration due to gravita-
tion. From the computed thickness H at time tf , we deduce the position sf of the
glacier surface at final time from

sf .x/ D s.x; tf / D b.x/CH .x; tf /: (2.4)

Note that we did not specify the time dependence of x1 and x2 in (2.1)3. Although
the boundaries of the glacier actually move with time, it is not necessary to add this
specification into the evolution equation. The mass-balance is the only responsible
factor for the boundaries’ motion. Equation (2.1) can handle vanishing thicknesses
inside the domain Œx1; x2�, as long as one enforces that the ice thickness must
remain positive at all times.

3 Shape optimization problem

Consider problem (2.1) when the initial and final surfaces si and sf and the surface
mass-balance B are known but the bedrock geometry is unknown. Our purpose is
to design an SOA that reconstructs the subglacial topography. On our synthetical
test cases, we know that the glacier surface topography evolves from si to sf over
the time frame Œti ; tf �. Therefore, we want to minimize the misfit between the com-
puted and exact surfaces at time tf . To this end, we set the bedrock topography b
as the control variable and define the cost functional

J.H ; b/ D
1

2

Z x2

x1

�
b CH jtDtf � sf

�2dx CR.b/; (3.1)

where the first term represents the misfit between the computed surface topog-
raphy, b CH jtDtf , and the exact surface topography, sf , and R is a Tikhonov
regularization term introduced to cure the problem’s ill-posedness [43]. Follow-
ing [23] and [35], we choose

R.b/ D
˛

2

Z x2

x1

jb0j2dx; (3.2)

so as to minimize oscillations in the subglacial topography. The inverse problem
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consists in minimizing (3.1) under the constraint8̂̂̂̂
<̂
ˆ̂̂:
@H

@t
D

@

@x

�
D
@

@x
.b CH /

�
CB; x1 < x < x2; ti � t � tf ;

H D si � b; x1 < x < x2; t D ti ;

H D 0; x D x1; x2; ti � t � tf :

(3.3)

To solve it, we use a BFGS [7, 14, 17, 37, 41] method, where the gradient of func-
tional J must be calculated. To this end, we consider the Lagrangian associated to
our problem, namely

L.H ; �; �; b/ D

Z tf

ti

Z x2

x1

�
@H

@t
�CD

@

@x
.b CH /

@�

@x
�B�

�
dxdt

C

Z x2

x1

�
H jtDti

� si C b
�
�dx C J.H ; b/; (3.4)

where � is the costate variable, i.e. the Lagrange multiplier corresponding to con-
straint (3.3)1 and � the Lagrange multiplier corresponding to the initial state equa-
tion (3.3)2. The two integrals augmenting the cost functional J to our Lagrangian
are the weak form of constraint (3.3) where the test functions are replaced with the
costate variables. Note that it is not necessary to take the boundary condition into
account, as it is implicitly understood in the evolution equation. The solutions of
the minimization problem are among the stationary points of L that satisfy [6]

rL.H ; �; �; b/ D 0 (3.5)

which corresponds to seeking H , �, �, and b such that8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂:

0 D

Z tf

ti

Z x2

x1

�
@ OH

@t
�C .nC 2/F

@

@x
.b CH /

@�

@x
OH C nD

@ OH

@x

@�

@x

�
dxdt

C

Z x2

x1

h
� OH jtDti

C
�
b CH jtDtf � sf

�
OH jtDtf

i
dx;

0 D

Z tf

ti

Z x2

x1

�
@H

@t
O�CD

@

@x
.b CH /

@ O�

@x
�B O�

�
dxdt;

0 D

Z x2

x1

�
H jtDti

� si C b
�
O�dx;

0 D �n

Z tf

ti

Z x2

x1

@

@x

�
D
@�

@x

�
Ob dxdt

C

Z x2

x1

�
b CH jtDtf � sf C �

�
Ob dx C

@R

@b
Ob;

(3.6)
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for all functions OH and O� that vanish at the boundaries x1 and x2 of domain� and
all functions O� and Ob defined on �, where

F .b;H / D �HnC1

ˇ̌̌̌
@

@x
.b CH /

ˇ̌̌̌n�1

: (3.7)

The first equation of (3.6) is the weak formulation of the backward diffusion-
transport equation8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

�
@�

@t
C .nC 2/F

@

@x
.b CH /

@�

@x

� n
@

@x

�
D
@�

@x

�
D 0; x1 < x < x2; ti � t � tf ;

� D sf � b �H ; x1 < x < x2; t D tf ;

� D 0; x D x1; x2; ti � t � tf ;

(3.8)

as well as
� D �; x1 < x < x2; t D ti : (3.9)

The second and third equations of (3.6) are the weak formulation of (3.3). Under-
standing variable H as a function of the bedrock topography, we define

J.b/ D J.H .b/; b/: (3.10)

Then, equation (3.6)4 is the Fréchet derivative of functional (3.10), i.e.

J 0.b/ Ob D �n

Z tf

ti

Z x2

x1

@

@x

�
D
@�

@x

�
Ob dxdt

C

Z x2

x1

�
b CH jtDtf � sf C �

�
Ob dx C

@R

@b
Ob; (3.11)

where
@R

@b
Ob D ˛

Z x2

x1

b0 Ob0dx: (3.12)

Remark that the gradient of (3.10) can be computed directly without consideration
of Lagrangian (3.4). In this analogous procedure, a forward, linear diffusion prob-
lem replaces the dual problem (3.8). However, such a method cannot be extended
to higher order models, like a First Order Approximation (FOA) or a full-Stokes
Approximation of ice flow, as it needs an explicit expression for the ice velocity.

In general, snow may accumulate up-glacier and the glacier’s tongue retreat or
advance, i.e. the glacier’s boundaries may not be the same at all times. In particular,
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it may be that part of the bedrock topography inside domain � is known. Let
Q� � � be the domain where the bedrock topography is unknown. Then, to take
moving boundaries into account, we enforce that

b D b�; for x 2 � n Q�; (3.13)

where b� is the given topography where it is known. The consideration of this
constraint is chosen for its ease of implementation and reliability. Instead, we could
incorporate a term of the form

1

2

Z
�n Q�

.b � b�/2dx (3.14)

into the cost functional (3.1) and restrict the original integral to the space domain Q�
instead of � or even incorporate (3.14) and keep the original integral as it is.
Such modifications of the original model for fixed boundary problems are delicate
especially because of the needed adaption of the regularization term (3.12). All
this leads to unnecessary complications, hence we decide to minimize the cost
functional J over the whole domain �, with a regularization also applied to the
entire �, with the consideration of constraint (3.13).

Additionally, in the case where B has negative values on part of �, constraint
(3.3) may lead to negative thicknesses. Here, this problem is avoided by consider-
ing max¹0;Hº instead of H . Such a choice makes the algorithm conceptually sim-
pler, at the expense of losing efficiency to determine the glacier’s time-dependent
boundaries compared to a formulation as an obstacle problem [24–26], which is
translated by the need of small time steps in the discretization described below.
Since the projection of thicknesses onto positive functions is not differentiable and
was not taken into account in the dual problem (3.8), instabilities may arise in the
algorithm.

However, numerical experiments show that we can circumvent this difficulty by
seeking a control b that satisfies

b < min
ti�t�tf

s.x; t/; x 2 Q�: (3.15)

In practice, we now discretize (3.3), (3.8), (3.9), and (3.11) in space and time.
Then, we apply Algorithm 1 until stopping criterion

kbmC1
� bm

k D max
x1<x<x2

jbmC1.x/ � bm.x/j < ı (3.16)

is met, for a real constant tolerance ı > 0, where bm is the bedrock estimation at it-
erationm. We solve the corresponding linear systems with the PETSc Library [4,5]
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and realize the line search as well as the BFGS algorithm with the “Bounded Lim-
ited Memory Variable Metric” (BLMVM) method available through the Toolkit
for Advanced Optimization (TAO), with the default values for its parameters [36].
The choice of the bounded version of LMVM is due to bounds (3.13) and (3.15)
because it allows us to avoid the consideration of the KKT conditions [28].

Algorithm 1. Shape optimization algorithm.

set glacier geometry with initial bedrock b0 and surface si
while kbmC1 � bmk > ı do

solve the primal problem (3.3)
solve the dual problem (3.8)–(3.9)
compute the gradient (3.11)
compute

bmC1
D bm

C

�
d2J

db2
.bm/

��1 dJ
db
.bm/;

with BLMVM that takes care of the bounds (3.13) and (3.15), where the
Hessian is approximated with the BFGS method.

end while

4 Space and time discretization

Let �x > 0 be some space step and �j D x1 C j�x, 0 � j � N C 1, vertices
in Œx1; x2� such that �0 D x1 and �NC1 D x2. Let �t > 0 be some time step
and t` D ti C `�t , 0 � ` �M C 1, such that t0 D ti and tMC1 D tf . Further-
more, let us denote the approximations of the thickness H .�j ; t

`/, bedrock to-
pography b.�j /, surface topography s.�j ; t`/, and costate variables �.�j ; t`/ and
�.�j / at location �j and time t` with H `

j , bj , s`
j , �`

j , and �j respectively. Let us
denote with H `, b, s`, �`, �, si , and sf the vectors of components H `

j , bj , s`
j ,

�`
j , �j , si .�j /, and sf .�j /. In these notations, we can write

s`
D bCH `:

Let us approximate (2.2) and (3.7) with

D`

j� 1
2

D �

�
H `

j CH `
j�1

2

�nC2 ˇ̌̌̌s`
j � s

`
j�1

�x

ˇ̌̌̌n�1

(4.1)

and

F `

j� 1
2

D �

�
H `

j CH `
j�1

2

�nC1 ˇ̌̌̌s`
j � s

`
j�1

�x

ˇ̌̌̌n�1

: (4.2)
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From now on, the space index j always satisfies 1 � j � N unless stated oth-
erwise. We approach the solution of (3.3) with the following finite-difference
scheme, centered in space, Crank–Nicolson in time [1, 8, 9, 31, 34]:8̂̂̂̂

<̂
ˆ̂̂:

H `C1
�H `

�t
D T .H `;H `C1;b/; 0 � ` �M;

H0
D si � b;

H `
0 D H `

NC1 D 0; 0 � ` �M C 1;

(4.3)

where

T
`;`C1

j D
1

2�x

�
D`

jC 1
2

s`
jC1 � s

`
j

�x
�D`

j� 1
2

s`
j � s

`
j�1

�x

�

C
1

2�x

�
D`C1

jC 1
2

s`C1
jC1 � s

`C1
j

�x
�D`C1

j� 1
2

s`C1
j � s`C1

j�1

�x

�
CBj : (4.4)

We now deduce the discretizations of the dual problem (3.8)–(3.9) as well as the
gradient (3.11). The corresponding equations in the semi-implicit case are given
in Appendix A. The discretized objective function reads

Jh.H ;b/ D
1

2
kbCHMC1

� sf k
2
2 CRh.b/; (4.5)

where k � k2 stands for the usual Euclidean norm, H is the vector of compo-
nents H `

j , 0 � ` �M C 1, 0 � j � N C 1, and

Rh.b/ D
˛

2

NX
jD0

ˇ̌̌̌
bjC1 � bj

�x

ˇ̌̌̌2
: (4.6)

We define the discretized Lagrangian with

Lh.H ;�;b/ D
�
H0
� si C b

�T
�0

C

MX
`D0

�t

�
H `C1

�H `

�t
� T .H `;H `C1;b/

�T

�`C1

C

MC1X
`D0

�
H `

0�
`
0 CH `

NC1�
`
NC1

�
C Jh.H ;b/; (4.7)

where �0 plays the role of � in (3.4) and � the vector of components �`
j , 0 � ` �

M C 1, 0 � j � N C 1. As in the continuous case, the solutions of the minimiza-
tion problem are among the stationary points of Lh that satisfy

rLh.H ;�;b/ D 0: (4.8)
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The resulting discretized dual problem reads8̂<̂
:�

�`C1
� �`

�t
D QT .�`;�`C1/; 1 � ` �M;

�`
0 D �

`
NC1 D 0; 0 � ` �M C 1;

(4.9)

where

QT
`;`C1

j D �
.nC 2/

4

�
F `

jC 1
2

s`
jC1 � s

`
j

�x

�
�`

jC1 � �
`
j

�x
C
�`C1

jC1 � �
`C1
j

�x

�

C F `

j� 1
2

s`
j � s

`
j�1

�x

�
�`

j � �
`
j�1

�x
C
�`C1

j � �`C1
j�1

�x

��

C
n

2�x

�
D`

jC 1
2

�
�`

jC1 � �
`
j

�x
C
�`C1

jC1 � �
`C1
j

�x

�

�D`

j� 1
2

�
�`

j � �
`
j�1

�x
C
�`C1

j � �`C1
j�1

�x

��
; (4.10)

whose final and initial conditions corresponding to (3.8)2 and (3.9) are

�MC1
j C .nC 2/

�t

4

�
F MC1

jC 1
2

sMC1
jC1 � s

MC1
j

�x

�MC1
jC1 � �

MC1
j

�x

C F MC1

j� 1
2

sMC1
j � sMC1

j�1

�x

�MC1
j � �MC1

j�1

�x

�

� n
�t

2�x

�
DMC1

jC 1
2

�MC1
jC1 � �

MC1
j

�x
�DMC1

j� 1
2

�MC1
j � �MC1

j�1

�x

�
D sf .�j / � bj �HMC1

j ; (4.11)

and

�0
j D �

1
j � .nC 2/

�t

4

�
F 0

jC 1
2

s0
jC1 � s

0
j

�x

�1
jC1 � �

1
j

�x

C F 0

j� 1
2

s0
j � s

0
j�1

�x

�1
j � �

1
j�1

�x

�
C n

�t

2�x

�
D0

jC 1
2

�1
jC1 � �

1
j

�x
�D0

j� 1
2

�1
j � �

1
j�1

�x

�
: (4.12)
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Moreover, the derivative of

Jh.b/ D Jh.H .b/;b/ (4.13)

can be shown to be

@Jh

@bj
.b/ D �

n�t

2�x

MX
`D0

"�
D`

jC 1
2

CD`C1

jC 1
2

��`C1
jC1 � �

`C1
j

�x

�

�
D`

j� 1
2

CD`C1

j� 1
2

��`C1
j � �`C1

j�1

�x

#

C bj CHMC1
j � sf .�j /C �

0
j C

@Rh

@bj
.b/; (4.14)

where
@Rh

@bj
.b/ D

˛

�x2

�
2bj � bj�1 � bjC1

�
: (4.15)

Note that the Lagrangian (4.7) reduces to

Lh.H ;�;b/ D
�
T .H ;b/

�T
�C

�
H0�0 CHNC1�NC1

�
C Jh.H ;b/; (4.16)

when the superscript ` is dropped. One may want to deduce the steady counter-
parts of (4.10), (4.11), (4.12), and (4.14). We do not advise such a procedure for
steady geometries because it is time-consuming and lacks robustness. Indeed, it is
not clear whether a stationary state exists for both the primal and dual problems,
starting from any bedrock topography bm and initial surface si . Moreover, its com-
putation may take a large amount of time, especially during the first BFGS itera-
tions. In practice, we rather solve the steady problem time-dependently, by setting
si D sf D s

� and choosing a large enough time frame Œti ; tf �. Instead of com-
puting the stationary state at every iteration, we only compute the evolution of the
surface topography over the time frame Œti ; tf � and study its deviation from the true
stationary geometry. Because of stationarity, such a deviation must be zero when
the algorithm has converged. This procedure saves significant computational effort
compared to a purely stationary algorithm.

The precision of the gradient (4.14) is crucial for our computations. To check it,
we consider Taylor’s expansion of Jh,

Jh.bC " Ob/ D Jh.b/C "
dJh

db
.b/ � ObCO."2/; (4.17)

and verify that [10]

lim
"!0

Jh.bC " Ob/ � Jh.b/

" dJh

db
.b/ � Ob

D 1: (4.18)
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To this end, we choose some reasonable vector b and for example the normalized
vector

Ob D

dJh

db
.b/

k
dJh

db
.b/k

: (4.19)

Our numerical experiments verify relation (4.18). Hence our implementation of
the discretizations of (3.3), (3.8), (3.9), and (3.11) can be trusted.

In the next section, we present numerical results obtained with this method ap-
plied to the same geometries as [34], namely the Flask outlet glacier in Antarc-
tica as well as the Muragl, Silvretta, and Rhône mountain glaciers in the Swiss
Alps. These glaciers were chosen because their subglacial geometry either could
be measured [12, 13] or is visible as ice has completely vanished [40]. The geom-
etry of Flask glacier is adapted to produce an additional test case, so that we have
zero thickness at its boundaries and no sliding. A confrontation with the results
obtained with SIM and TIM is carried out. Note that the TIM can be viewed as
a special case of the SOA, where we set

� D 0; x1 � x � x2; ti � t � tf ;

� D 0; x1 � x � x2:
(4.20)

We will see how convergence rate, number of iterations, computational time, and
accuracy are improved with the SOA. We first investigate the steady case that we
compare to the SIM and TIM. We then switch to transient geometries and examine
the differences with the TIM in both the fixed and moving-boundary situations.

5 Numerical results

For the sake of numerical validation, we use available data on two-dimensional
glacier evolution according to equation (2.1). In other words, this means that we
first choose a bedrock topography b�, an initial surface topography si , and a sur-
face mass-balance B from which we compute the final surface geometry sf with
equation (2.1). Topography b� is termed “solution bedrock.” Then, we perturb b�

and give it as an initial guess b0 to Algorithm 1, whose aim will be to recover the
solution bedrock b�. In the tables below, we denote the computed bedrock topog-
raphy by bc and the final surface topography obtained with bc by sc

f
. We focus

on the inversion of the SIA equations on the aforementioned synthetical geome-
tries inspired from real-world data. Every computation is done with �x D 25m,
�t D 10�3 a, ı D 10�6 m, � D 900 kg �m�3, and g D 9:81m � s�2. Furthermore,
from now on, we set n D 3, A D 0:1 bar�3a�1, and use the norm

k � k D max
x1<x<x2

j � j: (5.1)
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Figure 2. Various examples illustrating the application of Algorithm 1 to steady ge-
ometries, with �x D 25m, �t D 10�3 a, ı D 10�6, and tf � ti D 1 a for different
values of the regularization parameter ˛ (red, green, and blue lines). The continuous
black line represents the stationary surface and the dashed line the initial guess b0

for the bedrock topography. The white circles delineate the solution bedrock. When
˛ is small, the computed and the exact solution are hard to distinguish. Errors in the
bedrock and final surface topography estimations are listed in Table 1 for ˛ D 1 and
various time frames. Table 2 lists the errors, computational times, and numbers of
iterations when ˛ is such that the error in the basal estimation is comparable to the
one obtained with SIM for each geometry.

5.1 Steady geometries

We solve the stationary control problem with the SOA and compare the results to
those obtained with the SIM and TIM. The purpose is to investigate the differences
in accuracy and computational time. Let us first apply the SOA with various pa-
rameters ˛ to the four previously mentioned glaciers. Figure 2 shows the resulting
estimations when the time frame is 1 a. Most of the time, the large value ˛ D 10
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Figure 3. Sensitivity of the method to the regularization parameter when �x D
25m,�t D 10�3 a, ı D 10�6 m, and a time frame of 1 a for steady geometries. Vari-
ations in (a) number of iterations, (b) computational time, (c) error on the bedrock
topography, and (d) error on the computed surface from the estimated bedrock to-
pography are shown as a function of ˛. The number of iterations and the compu-
tational time are directly proportional. The errors grow with the regularization pa-
rameter. Differences between the various geometries can be large and, already in the
range we chose ˛, the error in the subglacial estimation can be large (e.g. on Muragl
glacier). Errors on the bedrock geometry are about one order of magnitude larger
than the errors on the surface topography.

leads to estimations too far from the solution, while the other ones are close to it.
When ˛ is small enough, we cannot distinguish any large discrepancy between the
estimated subglacial topography and the solution bedrock. Figure 3 shows how
sensitive the SOA is to the regularization parameter ˛. Figure 3 (a) and (b) evince
that it is not useful to increase ˛ in order to decrease the computational time. Fur-
thermore, the error in the subglacial topography due to the increase of ˛ is so large
that this parameter should be kept as small as possible, although the error in the
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final surface remains one order of magnitude smaller (see Figures 3 (c) and (d)),
indicating a low response on the surface topography to large fluctuations in the
bedrock geometry. Table 1 gives the errors on the geometries displayed by Fig-
ure 2 for ˛ D 1 and several time frames. We notice that for fixed ˛, the larger the
time frame, the more accurate the estimation. Not shown here, the computational
time increases with the size of the time frame, given that the primal and dual prob-
lems require more time steps. On the other hand, if the time frame is too small, the
algorithm has not enough information to deduce the subglacial topography, which
explains the large errors in Table 1’s first column. Although this error is large, the
error on the final surface is small due to the problem’s ill-posedness. Over this
small time frame, even a very wrong bedrock can lead to a final surface close to
the desired steady surface geometry.

tf � ti D 10
�1 a tf � ti D 1 a

Figure 3 kbc � b�k Œm� ksc
f
� s�k Œm� kbc � b�k Œm� ksc

f
� s�k Œm�

(a) 8.207eC02 6.325e�02 8.215eC00 2.043e�02
(b) 6.907eC01 5.410e�02 3.778eC01 5.010e�01
(c) 8.837eC01 6.176e�02 3.249eC00 1.610e�01
(d) 2.398eC02 1.784e�01 7.526eC00 2.739e�01

tf � ti D 10 a

Figure 3 kbc � b�k Œm� ksc
f
� s�k Œm�

(a) 3.353eC00 1.546e�02
(b) 1.554eC00 7.354e�02
(c) – –
(d) 4.630eC00 1.118e�01

Table 1. Discrepancy kbc � bk in the bedrock and discrepancy ksc
f
� s�k in the final

surface topography as a function of the time frame on the four steady geometries
represented in Figure 2 when the SOA with ˛ D 1 is applied. With the size of the
time frame, the estimation improves most of the time. A hyphen is printed where the
algorithm did not converge.

With smaller values of ˛, we can be as accurate as with the SIM. This is il-
lustrated by Table 2, which shows the discrepancies, number of iterations, and
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kbc � b�k Œm� ksc
f
� s�k Œm�

Figure 3 SIM SOA SIM SOA

(a) 1.180eC00 1.180eC00 1.090e�02 2.472e�03
(b) 5.973e�02 5.491e�02 5.297e�02 2.849e�05
(c) 1.305e�01 1.305e�01 7.719e�02 2.079e�03
(d) 2.101eC01 1.374eC01 9.272e�01 3.810e�01

nits TCPU Œs�

Figure 3 SIM SOA SIM SOA

(a) 1,527,130 756 3.580eC03 1.014eC03
(b) 96,089,700 2,119 4.383eC04 3.864eC02
(c) 9,613,360 198 3.093eC03 3.400eC01
(d) 13,132,500 546 9.974eC03 2.541eC02

Table 2. Discrepancies kbc � b�k and ksc
f
� s�k, number of iterations, and com-

putational time needed to converge in both the SIM and SOA. In the SOA, the
time frame was set to 1 a. Regularization parameters used (" corresponds to SIM
and ˛ to SOA): (a) " D 10�6, ˛ D 8:697 � 10�2, (b) " D 10�4, ˛ D 1:53 � 10�5,
(c) " D 10�4, ˛ D 8:751 � 10�3, (d) " D 10�3, ˛ D 2:2258. Parameter ˛ was cho-
sen in such a way that the subglacial discrepancy kbc � b�k is the same in both
cases in order to allow for a comparison. On geometry (d), this error is different,
because no parameter ˛ could be found to make both discrepancies match exactly.
However, this does not affect the comparison significantly. Contrarily to the errors
and computational times, the number of iterations of the two methods cannot be
compared, since they are completely different. The solution provided by the SOA is
of higher quality, because for the same subglacial discrepancy kbc � b�k a smaller
surface discrepancy ksc

f
� s�k is obtained. Computational times in the SOA are also

smaller than in the SIM.

computational times with ˛ chosen such that the same errors in the bedrock to-
pography as with the SIM are obtained for each geometry. Note that columns 1
and 2 of the second part of Table 2, listing the number of iterations in each case,
cannot be compared, because one iteration of the SIM corresponds to one single
time step of the glacier evolution towards the steady state, while it is one whole
simulation of the glacier evolution over the chosen time frame in the SOA. How-
ever, the computational time and the error on the final surface can be confronted.
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kbc � b�k Œm� ksc
f
� s�k Œm�

Figure 3 ˛ TIM SOA TIM SOA

(a) 2.480e�01 2.711eC00 2.711eC00 5.906e�01 6.333e�03
(b) 1.090e�01 1.390eC00 1.390eC00 5.080e�01 3.905e�02
(c) 3.270eC00 2.293eC01 2.293eC01 1.575eC01 5.001e�01
(d) 5.920e�01 5.358eC00 5.358eC00 2.340eC00 1.906e�01

nits TCPU Œs�

Figure 3 ˛ TIM SOA TIM SOA

(a) 2.480e�01 17,473 854 1.893eC04 1.178eC03
(b) 1.090e�01 745 233 2.190eC02 9.110eC01
(c) 3.270eC00 2,980 160 6.315eC02 3.449eC01
(d) 5.920e�01 3,219 498 1.418eC03 2.581eC02

Table 3. Discrepancies kbc � b�k and ksc
f
� s�k in bedrock and final surface to-

pographies, number of iterations, and computational time needed to converge in both
the TIM and SOA applied to a steady geometry, when the time frame is 1 a. In the
TIM, we set the regularization and fixed-point parameters to " D 100 and ˇ D 0:1
respectively. As in the comparison with the SIM (see Table 2), the quality of the esti-
mation is improved with the SOA. The number of iterations of the two methods can
be compared and is much smaller with the SOA. Since we simulate fewer evolutions
with SOA, its computational time is smaller. The listed regularization parameters ˛
were chosen such that the discrepancy kbc � b�k is the same in both cases.

We remark that the computational time needed to get an estimation with the same
error on b is every time smaller when we use the SOA. Moreover, the computed
final surface sc

f
is each time closer to the exact steady surface s�. Hence, the SOA

provides us with a bedrock topography of higher quality than the SIM.
Since one iteration of the SIM corresponds to an actual time step, whereas it is

a complete simulation of the glacier evolution over some time frame in the SOA,
we cannot compare their convergence rates. Therefore, we want to compare the
convergence rates of the TIM to those of the SOA. The TIM applied to steady
geometries consists in setting si D sf D s� and choose the same time frame as in
the SOA. Here, we list the values obtained with the TIM with fixed-point parameter
ˇ D 0:1, because the errors are smaller in this case and the convergence rates are
not very different from those with larger ˇ. Furthermore, we set the regularization
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" D 100 to make it fast. Table 3 compares the results obtained with the SOA to
those with the TIM. As before, we have sought the regularization parameter ˛
that makes the SOA converge towards a bedrock topography whose discrepancy
with the solution bedrock is the same as with the TIM. Again, the computed final
surface sc

f
with the estimated bedrock topography is closer to the exact one if

we apply the SOA. In Table 3, the number of iterations of the two methods can
be compared, since, this time, every iteration consists in simulating the glacier
over the chosen time frame. We notice that both the number of iterations and the
computational time are much smaller with the SOA. Figure 4 superimposes the
convergence rates of the two methods and evinces the faster rate of the SOA.
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Figure 4. Comparison of the convergence rates of the TIM and the SOA in the case
of the steady geometries shown in Figure 2, for parameters that lead to about the
same error in the estimation of the bedrock topography in both cases (see first two
columns of Table 3), when the time frame is 1 a. The TIM regularization and fixed-
point parameters were set to " D 100 and ˇ D 0:1. The applied SOA regularizations
are listed in Table 3. Convergence is faster with SOA than with TIM.



Estimating the ice thickness of mountain glaciers 805

5.2 Transient geometries

We now want to compare the efficiency of the TIM to that of the SOA in the case
of transient geometries. To make this comparison possible, the same time frame
must be chosen in both methods and, as above, the regularization parameter ˛ of
the SOA must be selected in such a way that the discrepancy kbc � b�k is about
the same in both cases. Tables 4–6 report the discrepancies between the computed
and solution bedrock topographies as well as between the computed and exact final
surfaces, the number of iterations, and the computational time needed to converge
for time frames of 1 a, 5 a, and 10 a when the glaciers’ boundaries are fixed.

kbc � b�k Œm� ksc
f
� sf k Œm�

Figure 3 ˛ TIM SOA TIM SOA

(a) 2.502e�01 2.726eC00 2.726eC00 5.920e�01 6.379e�03
(b) 6.032e�01 2.262eC00 2.262eC00 6.524e�01 9.772e�02
(c) 5.506eC00 6.951eC01 6.951eC01 8.587e�01 6.064e�01
(d) 5.549e�01 4.060eC00 4.060eC00 6.493e�01 1.021e�01

nits TCPU Œs�

Figure 3 ˛ TIM SOA TIM SOA

(a) 2.502e�01 17,493 846 1.651eC04 1.146eC03
(b) 6.032e�01 925 159 2.190eC02 6.628eC01
(c) 5.506eC00 950 177 2.040eC02 2.874eC01
(d) 5.549e�01 2,500 334 9.263eC02 2.008eC02

Table 4. Discrepancy kbc � b�k between the computed and the solution bedrock
topographies bc and b�, discrepancy ksc

f
� sf k between the computed and the so-

lution final surface geometries sc
f

and sf , number of iterations, and computational
time needed to converge in both the TIM and SOA applied to a fixed-boundary,
transient geometry, when the time frame is 1 a. In the TIM, we set the regularization
and fixed-point parameters to " D 100 and ˇ D 0:1 respectively. As in the previous
results, we have chosen the regularization parameters ˛ in such a way that the dis-
crepancy kbc � b�k is the same in both TIM and SOA. As in the steady case, the
quality of the estimation with SOA is better than with TIM.
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kbc � b�k Œm� ksc
f
� sf k Œm�

Figure 3 ˛ TIM SOA TIM SOA

(a) 6.502e�01 2.765eC00 2.765eC00 5.996e�01 1.029e�02
(b) 4.248eC00 2.331eC00 2.331eC00 6.589e�01 3.107e�01
(c) 1.000eC02 1.420eC01 1.410eC01 3.024eC00 2.860eC00
(d) 2.462e�01 2.930eC00 2.772eC00 6.245e�01 4.483e�02

nits TCPU Œs�

Figure 3 ˛ TIM SOA TIM SOA

(a) 6.502e�01 17,309 420 6.996eC04 2.972eC03
(b) 4.248eC00 853 80 7.076eC02 1.334eC02
(c) 1.000eC02 611 93 3.774eC02 7.212eC01
(d) 2.462e�01 2,459 449 3.458eC03 1.142eC03

Table 5. Same comparison as in Table 4 but over a time frame of 5 a.

The results are essentially the same as in the steady case. The resulting final
surface discrepancy is smaller with the SOA than the TIM. The high values of ˛
applied to geometry of Figure 2 (c) are due to the fact that a Gaussian filtering was
applied to the bedrock topography after each TIM iteration, allowing for conver-
gence but also increasing the error in the estimation. To get these errors with the
SOA, a large value of ˛ was used. Because the algorithm is the same as in the
steady case, the behavior of the convergence rate is the same.

Figures 5(a) and (b) depict the estimations in the case of retreating glaciers,
while Figures 5(c) and (d) those of growing glaciers. Technically, the estimation
for expanding glaciers is very easy to do. However, the retreating case may be
unstable and harder to deal with. This is because of the negativity of the surface
mass-balance at locations where the ice thickness is very small or zero. In this case,
much care has to be taken about bound (3.15) so that accurate estimations can be
carried out. Table 7 reports the errors, numbers of iterations and computational
times done in both the TIM and SOA. The same conclusions as before can be
reached, i.e. the estimated topography is of higher quality with SOA than with
TIM, with this set of parameters.
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kbc � b�k Œm� ksc
f
� sf k Œm�

Figure 3 ˛ TIM SOA TIM SOA

(a) 7.054e�01 2.795eC00 2.795eC00 6.067e�01 1.128e�02
(b) 3.489eC00 2.183eC00 2.183eC00 6.237e�01 2.406e�01
(c) 1.563eC01 5.646eC00 5.646eC00 9.010e�01 4.149e�01
(d) 2.691e�01 2.836eC00 2.836eC00 6.029e�01 4.742e�02

nits TCPU Œs�

Figure 3 ˛ TIM SOA TIM SOA

(a) 7.054e�01 17,286 381 1.483eC05 5.369eC03
(b) 3.489eC00 797 82 1.242eC03 2.163eC02
(c) 1.563eC01 374 64 3.969eC02 1.035eC02
(d) 2.691e�01 2,444 401 6.540eC03 1.854eC03

Table 6. Same comparison as in Tables 4 and 5 but over a time frame of 10 a.

5.3 Sensitivity analysis

We present a sensitivity analysis of our method and restrict ourselves to perturba-
tions of the form a�.x/, where the perturbation’s amplitude a > 0 is of the order of
magnitude of typical measurement errors and �.x/ is a uniformly distributed ran-
dom variable on the interval Œ�1; 1�. We first add a�.x/ to the surface topography
and then to the surface mass-balance. When a D 1m, Figure 6 shows how sensi-
tive the estimation is to the small perturbation of the initial and final surfaces and
how the increase of the regularization parameter affects it. None of the estimations
converged. Instead, they oscillated around the solution. However, the smoothness
of the estimated topography is improved with increasing ˛, even though the es-
timation still differs from the solution by more than 1m. To make the algorithm
converge, one has to smooth the perturbed data. On the other hand, the SOA is not
sensitive to the mass-balance, just like the SIM and TIM.

Finally, we show how susceptible the method is to changes in the diffusion pa-
rameter � (see equation (2.2)). Of particular interest is the sensitivity of the method
to variations in the rate factor A that is related to � according to equation (2.3).
Throughout this paper, we used the value A D 0:1 bar�3a�1 and now aim at illus-
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Figure 5. Bedrock topography estimation in the transient case when the glaciers are
retreating ((a) and (b)) or expanding ((c) and (d)). The thick continuous and dashed
lines represent the initial and final surfaces respectively, while the thick red and thin
black lines show the solution and estimated subglacial topographies. For these sim-
ulations, we set �x D 25m, �t D 10�3 a, and ı D 10�6 m. The time frames are
different: (a) tf � ti D 15 a, (b) tf � ti D 5 a, (c) tf � ti D 5 a, (d) tf � ti D 10 a.
Each time, the mass-balance was chosen in such a way that a large retreat or advance
could be generated. As before, the estimation is very close to the solution topogra-
phy. Corresponding errors, number of iterations, and computational times are listed
in Table 7.

trating the consequences of an uncertainty on this parameter, which is very likely
in practical applications. Figure 7 evinces the obtained estimations when the solu-
tion bedrock topography is ruled by a rate factor amounting to A D 0:1 bar�3a�1

and we try to estimate the bedrock with a different value, ranging from A D 0:07

to 0:13 bar�3a�1. In the SIA, the precise value of this factor does not seem to be
important. The influence is largest on the geometry depicted by Figure 7 (a), due
to the large thicknesses involved or small surface slope.
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kbc � b�k Œm� ksc
f
� s�k Œm�

Figure 5 ˛ TIM SOA TIM SOA

(a) 5.716e�01 2.042e�01 2.042e�01 3.196e�02 1.858e�02
(b) 5.000eC00 6.629eC00 1.718eC00 1.355eC01 1.335e�01
(c) 1.565eC00 1.805eC00 1.805eC00 4.157e�01 1.001e�01
(d) 9.409e�01 1.672eC00 1.672eC00 5.931e�01 5.732e�02

nits TCPU

Figure 5 ˛ TIM SOA TIM SOA

(a) 5.716e�01 2,548 49 3.574eC03 1.630eC02
(b) 5.000eC00 732 107 1.154eC03 3.530eC02
(c) 1.565eC00 1,468 85 8.220eC02 7.000eC01
(d) 9.409e�01 1,146 178 4.085eC03 1.022eC03

Table 7. Discrepancies kbc � b�k and ksc
f
� sf k between the computed and solu-

tion bedrock topographies bc and b� as well as between the computed and solution
final surface geometries sc

f
and sf , number of iterations, and computational times

needed to converge in both the TIM and SOA applied to a moving-boundary, tran-
sient geometry, over various time frames (listed in the caption of Figure 5). In the
TIM, we set the regularization and fixed-point parameters to " D 100 and ˇ D 0:1
respectively. The regularization parameter ˛ is chosen in such a way that the discrep-
ancy kbc � b�k is the same in both the TIM and SOA. The quality of the estimation
with SOA is better than with TIM.

6 Conclusion

Existing SOA that aim at reconstructing glaciers’ subglacial topographies are usu-
ally based on the minimization of the surface velocity mismatch and only deal
with steady or quasi-stationary geometries. The recently introduced TIM, which is
a particular case of SOA where the costate variables are set to zero, is an excep-
tion, since it minimizes the surface topography misfit in both steady and transient
situations with a simple fixed-point procedure. Described as unreliable in the shal-
low water framework [15], the SOA applied to the shallow ice equation appears to
be accurate, reliable, and fast. In particular, even if the initial guess for the bedrock
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Figure 6. Sensitivity to the surface of Muragl glacier, on a transient, fixed-boundary
problem over a time frame of 1 a. We applied the perturbation with a D 1m to both
the initial and final surfaces, represented by the thick black and thin blue lines re-
spectively. The perturbation can hardly be noticed on the two surface geometries.
The solution and estimated bedrock topographies are delineated by the thick red and
thin black lines. Without smoothing of the perturbed data, the algorithm does not
converge, but oscillates around the displayed estimation. With larger regularization
parameters, the estimation becomes smoother and closer to the solution topography.

is far from the solution, the resulting subglacial estimation is close to the solution
bedrock on all the tested geometries, even when moving boundaries are taken into
account. The method is as sensitive to surface data as TIM.

The SOA not only deals with transient evolutions but is also faster and more
accurate than the SIM and TIM, as far as our comparisons can tell. As the latter
procedures, the SOA needs neither filtering of the surface topography with a lower
slope limit nor further assumptions on the model itself. Moreover, in this case,
it remains simple as it only consists in the minimization of the misfit between the
computed and exact (or measured) surface topographies at the end of the glaciers’
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Figure 7. Sensitivity to the rate factor A on fixed-boundary problems. Comparison
of the subglacial estimation with A D 0:1 bar�3a�1 to estimations where A ranges
from 0:07 to 0:13 bar�3a�1 in the transient case over a time frame of 1 a. The thick
black and red lines delineate the initial surface si and the solution bedrock topogra-
phies respectively, corresponding to A D 0:1 bar�3a�1. No large discrepancy with
the solution bedrock can be noted, except in the extreme case (a) where the ice
thickness is the largest and surface slope is the smallest.

time evolution and the PDE-constraint is cast into one single evolution equation.
The applied regularization that minimizes the gradient of the bedrock topography
is well known among glaciologists. A large quantity of minimization algorithms
have been efficiently implemented to solve this type of PDE-constrained optimiza-
tion problems [22, 36].

Convergence of the TIM is still an open question in three space dimensions.
Whatever the model order is, the Laplacian regularization does not always smooth
the topography sufficiently so that an additional Gaussian filtering may have to be
applied after each iteration. Such a filtering usually prevents the three-dimensional
TIM from converging or being accurate. Moreover, since it assumes the locality
of bedrock to surface perturbation transfers, the method may not work well in all
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situations. The SOA in turn seems to be a method that circumvents these issues.
It is also extensible to three space dimensions and higher order models, at the
expense of making the problem’s formulation more complex. Furthermore, sliding
can be easily embodied.

x

y

a

b

c

d e

500 m

50
0

m

0 100 200 300 400 500

1880

1890

1900

1910

1920

1930

1940

1950

z
[m

]

a

SOA TIM Solution

0 100 200 300 400

2100

2120

2140

2160

2180

2200

z
[m

]

b

0 100 200 300 400 500 600 700
s [m]

2400

2450

2500

2550

c
0 100 200 300 400 500 600 700 800

s [m]

2520

2540

2560

2580

2600

2620

2640

2660

d
0 200 400 600 800

s [m]

2700

2750

2800

z
[m

]

e

Figure 8. Application to the geometry of Muragl glacier, Swiss Alps, of the extended
SOA and TIM to three space dimensions. The grid spacing, time step, and tolerance
were set to �x D 25m, �t D 10�3 a, and ı D 10�6 m. SOA and TIM parameters
were set to ˛ D 1, ˇ D 0:1, and " D 1. The thick black and red lines represent the
final surface and the solution bedrock topographies respectively, while the thin blue
and green lines delineate the bedrock topographies obtained with the SOA and TIM
respectively. In the subplots (a) – (e), the abscissa s and ordinate z represent the co-
ordinate following the profile and the altitude of the depicted topographies respec-
tively. On each of the shown profiles, the error committed is small. The accuracy of
the SOA is higher than that of TIM, especially at the glacier’s tongue (profile (a)).

To conclude, let us show a preliminary result on the three-dimensional geometry
of Muragl glacier, in the Swiss Alps (see Figure 8). It comes from the straightfor-
ward extension of the algorithm presented in this paper to three-space dimensions,
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where the constraint reads8<:
@H

@t
D r �

�
HnC2

kr.b CH /kn�1
r.b CH /

�
CB in �? � Œti ; tf �;

H D si � b in �? � ¹tiº;
(6.1)

where �? is the glacier map domain (i.e. the whole .x; y/-plane shown in the
contour plot depicted by Figure 8) and r the .x; y/-gradient operator. We can
follow the very same procedure as that exposed in this contribution in the three-
dimensional case described by equation (6.1). Its application to Muragl glacier
results in the profiles shown in Figure 8 (a)–(e) which are transversal lines across
the glacier. For the sake of comparison, we also include the estimation obtained
with the TIM. The SOA regularization parameter was set to ˛ D 1, while the TIM
parameters to " D 1 and ˇ D 0:1. Again, on each of these profiles, the differ-
ence between the solution and reconstructed bedrock topographies is very small,
of the order of 10m with the SOA. The accuracy of the SOA is higher than that
of the TIM, especially at the glacier’s tongue. In fact, the TIM struggles converg-
ing on that part of the glacier, whereas the SOA convergence is straight and fast,
which makes it very interesting in terms of computational times. The detailed ex-
tension of the two-dimensional method to three dimensions will be the subject of
a forthcoming publication.

A Equations of the semi-implicit scheme
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The dual problem is discretized with
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Finally, the gradient of the objective function is
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