29 research outputs found

    Artificial Neural Nets with Interaction of Afferents

    Get PDF
    The aim is to obtain computationally more powerful, neuro physiologically founded, artiïŹcial neurons and neural nets. ArtiïŹcial Neural Nets (ANN) of the Perceptron type evolved from the original proposal by McCulloch an Pitts classical paper [1]. Essentially, they keep the computing structure of a linear machine followed by a non linear operation. The McCulloch-Pitts formal neuron (which was never considered by the author’s to be models of real neurons) consists of the simplest case of a linear computation of the inputs followed by a threshold. Networks of one layer cannot compute anylogical function of the inputs, but only those which are linearly separable. Thus, the simple exclusive OR (contrast detector) function of two inputs requires two layers of formal neuron

    Control and command systems concepts from early work on a Mars Rover

    Get PDF
    We recover and develop some robotic systems concepts (on the light of present systems tools) that were originated for an intended Mars Rover in the sixties of the last century at the Instrumentation Laboratory of MIT, where one of the authors was involved. The basic concepts came from the specifications for a type of generalized robot inspired in the structure of the vertebrate nervous systems, where the decision system was based in the structure and function of the Reticular Formation (RF). The vertebrate RF is supposed to commit the whole organism to one among various modes of behavior, so taking the decisions about the present overall task. That is, it is a kind of control and command system. In this concepts updating, the basic idea is that the RF comprises a set of computing units such that each computing module receives information only from a reduced part of the overall, little processed sensory inputs. Each computing unit is capable of both general diagnostics about overall input situations and of specialized diagnostics according to the values of a concrete subset of the input lines. Slave systems to this command and control computer, there are the sensors, the representations of external environment, structures for modeling and planning and finally, the effectors acting in the external world

    Distributed, layered and reliable computing nets to represent neuronal receptive fields

    Get PDF
    Abstract. Receptive fields of retinal and other sensory neurons show a large variety of spatiotemporal linear and non linear types of responses to local stimuli. In visual neurons, these responses present either asymmetric sensitive zones or center-surround organization. In most cases, the nature of the responses suggests the existence of a kind of distributed computation prior to the integration by the final cell which is evidently supported by the anatomy. We describe a new kind of discrete and continuous filters to model the kind of computations taking place in the receptive fields of retinal cells. To show their performance in the analysis of diferent non-trivial neuron-like structures, we use a computer tool specifically programmed by the authors to that efect. This tool is also extended to study the efect of lesions on the whole performance of our model nets

    Dendritic-Like Reliable Computation in Artificial Neurons

    Get PDF
    Dendritic computation is a term that has been in neuro physiological research for a long time [1]. It is still controversial and far for been clariïŹed within the concepts of both computation and neurophysiology [2], [3]. In any case, it hasnot been integrated neither in a formal computational scheme or structure, nor into formulations of artiïŹcial neural nets. Our objective here is to formulate a type of distributed computation that resembles dendritic trees, in such a way that it shows the advantages of neural network distributed computation, mostly the reliability that is shown under the existence of holes (scotomas) in the computing net, without ?blind spots?

    Modeling of limestone dissolution for flue gas desulfurization with novel implications

    Get PDF
    solid-liquid dissolution is a central step in many industrial applications such as pharmaceutical, process engineering, and pollution control. Accurate mathematical models are proposed to improve reactor design and process operations. Analytical methods are significantly beneficial in the case of iterative methods used within experimental investigations. In the present study, a detailed analytical solution for the general case of solid particles dissolving in multiphase chemical reaction systems is presented. In this model, the authors consider a formulation that considers the particles' shape factor. The general case presented could be utilized within different problems of multiphase flows. These methods could be extended to different cases within the chemical engineering area. Examples are illustrated here in relation to limestone dissolution taking place within the Wet Flue Gas Desulfurization process, where calcium carbonate is dissolving in an acidic environment. The method is the most common used technology to abate SO2 released by fuel combustion. Limestone dissolution plays a major role in the process. Nevertheless, there is a need for improvements in the optimization of the WFGD process for scale-up purposes. The mathematical model has been tested by comparison with experimental data from several mild acidic dissolution assays of sedimentary and metamorphic limestone. We have found that R2 c 0.92 ± 0.06 from dozens of experiments. This fact verifies the model qualifications in capturing the main drivers of the system.Fil: De Blasio, Cataldo. Abo Akademi; FinlandiaFil: Salierno, Gabriel Leonardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Quimicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Quimicos.; ArgentinaFil: Sinatra, Donatella. Abo Akademi; FinlandiaFil: Cassanello, Miryan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Quimicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Quimicos.; Argentin

    Analysis of operational issues in hydrothermal liquefaction and supercritical water gasification processes: a review

    Get PDF
    Biomass is often referred to as a carbon–neutral energy source, and it has a role in reducing fossil fuel depletion. In addition, biomass can be converted efficiently into various forms of biofuels. The biomass conversion processes involve several thermochemical, biochemical, and hydrothermal methods for biomass treatment integration. The most common conversion routes to produce biofuels include pyrolysis and gasification processes. On the other hand, supercritical water gasification (SCWG) and hydrothermal liquefaction (HTL) are best suitable for converting biomass and waste with high moisture content. Despite promising efficiencies, SCWG and HTL processes introduce operational issues as obstacles to the industrialization of these technologies. The issues include process safety aspects due to operation conditions, plugging due to solid deposition, corrosion, pumpability of feedstock, catalyst sintering and deactivation, and high production costs. The methods to address these issues include various reactor configurations to avoid plugging and optimizing process conditions to minimize other issues. However, there are only a few studies investigating the operational issues as the main scope, and reviews are seldomly available in this regard. Therefore, further research is required to address operational problems. This study reviews the main operational problems in SCWG and HTL. The objective of this study is to enhance the industrialization of these processes by investigating the operational issues and the potential solutions, i.e., contributing to the elimination of the obstacles. A comprehensive study on the operational issues provides a holistic overview of the biomass conversion technologies and biorefinery concepts to promote the industrialization of SCWG and HTL.Fil: Ghavami, Niloufar. Abo Akademi; FinlandiaFil: Özdenkçi, Karhan. Abo Akademi; FinlandiaFil: Salierno, Gabriel Leonardo. Abo Akademi; Finlandia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Björklund SĂ€nkiaho, Margareta. Abo Akademi; FinlandiaFil: De Blasio, Cataldo. Abo Akademi; Finlandi

    Comparison of the fluidized state stability from radioactive particle tracking results

    Get PDF
    Currently, various industrial processes are carried out in fluidized bed reactors. Knowing its internal dynamics is fundamental for the intensification of these processes. This work assesses the motion of fluidized calcium alginate spheres under the influence of an upward fluid flow within a 1.2 m high and 0.1 m inner diameter acrylic column. The liquid–solid fluidized bed was compared with a gas–liquid–solid fluidized bed operation mode in terms of mixing behavior. The radioactive particle tracking technique is a proper methodology to study the internal dynamics of these kinds of equipment. Data gathered were analyzed with Shannon entropy as a dynamic mixing measure. Mixing times were found to be between 1 and 2.5 seconds for both fluidization modes. The liquid– solid fluidized bed presents a rather smooth mixing time profile along the column. On the other hand, the gas–liquid–solid fluidized bed showed high sensitivity of entropy production with height, reaching a sharp tendency break at the second quartile of the column. The Glansdorff–Prigogine stability measure can accurately capture flow regime transitions of the gas–liquid–solid fluidized bed, allowing it to be used to construct reliable operative windows for fluidization equipment.Fil: Salierno, Gabriel Leonardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; ArgentinaFil: Gradizek, Anton. Joef Stefan Institute; EsloveniaFil: Maestri, Mauricio Leonardo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; ArgentinaFil: Picabea, Julia Valentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Cassanello, Miryan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias; ArgentinaFil: De Blasio, Cataldo. Åbo Akademi University; FinlandiaFil: Cardona, Maria Angelica. ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de FĂ­sica (Centro AtĂłmico Constituyentes); Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de TecnologĂ­as Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de TecnologĂ­as Emergentes y Ciencias Aplicadas; ArgentinaFil: Hojman, Daniel Leonardo. ComisiĂłn Nacional de EnergĂ­a AtĂłmica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de FĂ­sica (Centro AtĂłmico Constituyentes); Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Somacal, HĂ©ctor RubĂ©n. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de TecnologĂ­as Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de TecnologĂ­as Emergentes y Ciencias Aplicadas; Argentin

    Structured models of cell migration incorporating molecular binding processes

    Get PDF
    The dynamic interplay between collective cell movement and the various molecules involved in the accompanying cell signalling mechanisms plays a crucial role in many biological processes including normal tissue development and pathological scenarios such as wound healing and cancer. Information about the various structures embedded within these processes allows a detailed exploration of the binding of molecular species to cell-surface receptors within the evolving cell population. In this paper we establish a general spatio-temporal-structural framework that enables the description of molecular binding to cell membranes coupled with the cell population dynamics. We first provide a general theoretical description for this approach and then illustrate it with two examples arising from cancer invasion

    Impact of Beacon-Dependent Parameters on Bluetooth Low Energy Indoor Positioning Accuracy

    No full text
    Blue Low Energy technology is playing an important role nowadays in ubiquitous systems, being the beacons a key element. The configuration of parameters related to the beacons, such as their transmission power or their advertising interval should be studied in order to build fingerprinting indoor positioning systems based on this technology as accurate as possible. In this work, we study the impact and the interplay of those parameters in static indoor positioning as well as the orientation effect in the calibration phase. To reduce the time of data collection, a semi-automatic system is introduced

    Study on an Indoor Positioning System for Harsh Environments Based on Wi-Fi and Bluetooth Low Energy

    No full text
    This paper presents a study of positioning system that provides advanced information services based on Wi-Fi and Bluetooth Low Energy (BLE) technologies. It uses Wi-Fi for rough positioning and BLE for fine positioning. It is designed for use in public transportation system stations and terminals where the conditions are “hostile” or unfavourable due to signal noise produced by the continuous movement of passengers and buses, data collection conducted in the constant presence thereof, multipath fading, non-line of sight (NLOS) conditions, the fact that part of the wireless communication infrastructure has already been deployed and positioned in a way that may not be optimal for positioning purposes, variable humidity conditions, etc. The ultimate goal is to provide a service that may be used to assist people with special needs. We present experimental results based on scene analysis; the main distance metric used was the Euclidean distance but the Mahalanobis distance was also used in one case. The algorithm employed to compare fingerprints was the weighted k-nearest neighbor one. For Wi-Fi, with only three visible access points, accuracy ranged from 3.94 to 4.82 m, and precision from 5.21 to 7.0 m 90% of the time. With respect to BLE, with a low beacon density (1 beacon per 45.7 m2), accuracy ranged from 1.47 to 2.15 m, and precision from 1.81 to 3.58 m 90% of the time. Taking into account the fact that this system is designed to work in real situations in a scenario with high environmental fluctuations, and comparing the results with others obtained in laboratory scenarios, our results are promising and demonstrate that the system would be able to position users with these reasonable values of accuracy and precision
    corecore