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ABSTRACT. Receptive fields of retinal and other sensory neurons show a large variety of 
spatiotemporal linear and non linear types of responses to local stimuli. In visual neurons, these 
responses present either asymmetric sensi-tive zones or center-surround organization. In most cases, 
the nature of the responses suggests the existence of a kind of distributed computation prior to the 
integration by the final cell which is evidently supported by the anatomy. We describe a new kind of 
discrete and continuous filters to model the kind of computations taking place in the receptive fields 
of retinal cells. To show their performance in the analysis of different non-trivial neuron-like 
structures, we use a computer tool specifically programmed by the authors to that effect. This tool is 
also extended to study the effect of lesions on the whole performance of our model nets. 

1. Introduct ion. The retina, as well as cortex, shows a conspicuous layered struc­
ture which strongly suggests they perform a kind of distributed layered computa­
tion [8], [9]. In this structure there is always overlapping of “sensory fields” between 
the neighbouring units, so a double process of convergence-divergence of the infor­
mation takes place. Visual neurons both in retina and cortex present in addition 
either asymmetric sensitive zones or center-surround organization of their receptive 
fields [28], [13]. In any case, the nature of the responses suggests the existence of 
a kind of distributed computation prior to the integration by the final cell, a fact 
evidently supported by the anatomy [36]. 

As the anatomy clearly shows, these computation intermediate “modules” are 
neither homogenous nor exactly regularly distributed, though, for the sake of for­
mulations, they are many times admitted to be so and referred to as “computing 
modules” or “subunits” [29], [23]. 

A general distributed discrete computing structure that generates the spatial 
weighting profiles of receptive fields has been previously described [19]. We present 
here a general structure of layered distributed computation formed by two or three 
inputs and one output, by which any parallel layered computing structure can be 
represented. Functional formulations are made by Newton Filters, in the discrete 
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case and generalized to Hermite Functions in the continuous. I t is shown that these 
provide for appropriate representations of center-periphery receptive fields, both 
symmetric and asymmetric and that, in addition, any arbitrary weight profile can 
be represented by them. Also, some types of non linear, mostly local, computations 
are included. 

By means of the computer tool developed to study large non-trivial neuron-like 
structures (for one dimensional or two dimensional radially symmetric arbitrary 
receptive fields profiles), i t has been possible to perform both the analysis (given 
a structure, find the overall weighting function) and the synthesis (find a structure 
that performs a given function). Also, what is most relevant to distributed compu­
tation, the effect of “holes” or “local lesions” (scotomas) in different parts of the net 
are considered. For the cases studied, the effects of lesions are found to depend on 
their location and affect mostly the quantitative (amplitude) aspects of the weights 
than the qualitative (shape) ones. The results are reported here, as well as other 
consequences of the distributed nature of the computation. 

This paper is organized in three important sections: first, discrete Newton Filters 
are described to model layered and distributed computation that takes place at 
retinal cells level. Second, Newton Filters extension to the continuum leads to 
Hermite functions and functionals. Third, the analysis and synthesis of weight 
profiles is described using a computer tool specifically programmed to that effect. 

2. Receptive fields: Basic layered, distr ibuted structures. Prototypes of 
idealized structures corresponding to the retina or to cortex, show two important 
characteristics from the computational point of view. First, there are granular 
structures arranged in layers of quasi similar units, which project their normally 
many inputs to the single output from units of prior layer. That is, from one layer 
to the next there is a convergence of the information [11]. Second, the single output 
of one unit in one layer is “picked up” by various or many units of the next. That 
is, there is also a divergence of the information. 
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Figure 1 . A general three layers computing network. 

If the overall number of inputs lines to the net and the number of output lines (or 
their information content) are preserved (like in foveal zones), then all the incident 
local information could be recovered from the outputs, in despite that the local 
details have been “dispersed” by divergence and “mixed up” by convergence. Also, 
local lesions do not provoke “blind spots” or scotomas; only a kind of reduced 
resolution. The types of structures that we consider have these properties. 

We start from the structure in figure 1 where a row of input lines correspond 
to a kind of linear receptive (sensory) field, providing for 20 signals, x i . There are 



three layers of computing units that will finally end in the output units O j . We 
must insist that there is not a one-to-one correspondence between computing units 
and neurons in modelling. Computing units could be “distributed” in, for example, 
the dendrites of real neurons, and/or in lateral connections, like those provided by 
amacrines and horizontal cells. Also, there is not such a one-to-one correspondence 
with formal or artificial neurons in ANN. 

Convergent and divergent paths for signals can be easily identified in this network. 
For example, x 1 to x13 signals converge into O1, whereas all the overlapping, from 
x6 to x14 signals, diverge to O1 and O j . 
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Figure 2. Two inputs-one output computing units representation 
of a multilayered network, equivalent to the one in figure 1. 

There is a simple multilayer representation for this net in which all the computing 
units of one layer are computing the same functions. This is shown in figure 2. 
Each unit has two inputs and connect to only two units of the next layer. Again, 
convergent and divergent paths can be easily identified. The interesting point is 
that both structures are equivalent, they have the same function and also that, 
given one net, the other can be obtained and viceversa. Notice that the number 
of layers is the same that the extent of the receptive field minus one (19 in the 
example). 

We shall develop the analytical representations of the distributed nets for neu-
ronal receptive fields by means of the 2 and 3 input lines units, and show for them 
the corresponding analysis and synthesis constructive theorems. Notice that the 
network of figure 1 could be reduce to 2 and 3 input units partially (per layers) or 
globally (represented by the network in figure 2). 

Two/three inputs units representation networks lead naturally to Newton Filters 
for the discrete case and to Hermite Functions for the continuous cases. They 
permit clear and useful expressions for the weight profiles (filter kernels) and rapid 
solutions for the direct and inverse network problems. They also provide for a mean 
to investigate the effect of lesions in layered-parallel structures and a transparent 
way to introduce typical local non-linearities in visual processing networks. 

3. Representation by Newton filters. Newton Filters can be introduced [21], [22] 
in the following way: Let us suppose a set of n inputs in one dimension: x1 , x2 , . . . , x n 

and two rules, A and D, to combine two by two those inputs. We shall assume here­
after that A is the adding rule and D is the substracting rule, so that the output 
produced by inputs x i and x i + 1 is as follows: 



and 

D ( X J + I , Xj) = X j + i — Xj 

A(x i + 1 , x i ) = x i + 1 + x i 

Other definitions for A and D are discussed in [21]. In this way, n - 1 outputs will 
be produced from n inputs, those n - 1 outputs will produce n - 2 outputs in turn 
and so on. Then we can study the way every input, x i , contributes to the final 
output, O. 

For example, let us suppose 4 inputs x1, x2 , x3 , x4 and the A rule (see figure 3). 
I t can be observed that the weights, or contributions of each input x i ( i = 1,2, 3, 4) 
to the final output O, are respectively 1, 3, 3, 1. 
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Figure 3. Output O produced by 4 inputs x 1 , . . . , x 4 and A rule. 

I t is not difficult to see that, in general, the weight with which contributes the 
element at position k in row n is precisely the coefficient 

(1) 

of the Newton Binomial expansion. In the previous example, the input x2 which is 
in position k = 2, contributes in row n = 3 with a weight 
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Figure 4. Output O produced by 4 inputs x 1 , . . . , x 4 and D rule. 

If, in the example above, instead of using the rule A, we use the rule D or 
subtraction, weights in absolute value remain the same, with signs alternating (see 
figure 4). 



In this case, the weights are respectively 1,-3, 3, - 1 . In general, the input in 
position k in row n contributes to the output with the coefficient of the Newton 
Binomial expansion, that is, 

( —1)n+ ( n \ 
k 

This structure has a discrete filter nature. 
So, let us define a Newton Filter as the result of a cascade of processes A and D 

and let us denoted it as: 

N (A m ,D n ) 
where m and n stands for the number of rows with A and D processes respectively. 

The order in which these A and D processes are applied doesn’t change the weights 
in the output. For a proof, see [21]. For example, the filter N(A2 , D2), i.e., the 
Newton filter with two adding and two subtracting rows, is easily obtained as shown 
in figure 5. 

Each square box in figure 5(a) can be considered as a computing subunit with two 
inputs-one output. Changing the squares to nodes, the equivalent representation 
of figure 5(b) is obtained. The weights are assumed to be + 1 if i t is not otherwise 
indicated. 
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(b) Equivalent representation of N(A2,D2) 
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Figure 5. N(A2 ,D2 ) Newton Filter and its equivalent representation. 

Using this procedure the overall weights for any filter can be computed. For 
example, the weights corresponding to the filter N(A1 0 ,D2) are: 

1x1+8x2+26x3+40x4+15x5-48x6-84x7-48x8+15x9+40x10+26x11+8x12+1x13 

The similarity between this computational structure and the retinal receptive fields 
weights for some ganglia is apparent, but for one dimension. In this model, the filter 
structure gives a kind of structure of the dendritic arborization of retinal cells. The 
‘tree’ will be more complex as wider the filter is and, in this manner, the computing 
complexity will increase. 

Classical center-periphery receptive field structures [1], [10], [25] can be obtained 
by the difference of discrete Gaussians, result of Newton Filters of different receptive 
field length. However, as i t will be discussed, a better representation is obtained by 
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100 

80 

60 

40 

20 

0 

-20 

-40 
0 4 8 12 

Input (xi) 
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Newton Filters where two layers are of local weights +1 , -1 , as illustrated in filter of 
figure 6. 

It should be noted that , in the above model, all the micro-processes have weights 
with absolute value equal to 1 and it is from the contribution of each one of them 
where we get an overall weight distribution tha t is similar to tha t found in natural 
systems. 

We next consider the general case of weights of the type (a, 6), with a, 6 real 
numbers, to obtain what we call “Generalized Newton Filters”. 

That is: 

xi = ai • Xi + bi • Xj+i = ai • (Xj + 6j • ) = ai • (Xj + ej • Xj+i) 
a,i 

where 

Si = — 
a,i 

By put t ing local weights in the form cij • (1, ej) and if cij = 1, a normalized filter is 
obtained. 

How can the global weights be computed from the local ones? Suppose we 
have 4 inputs xo,xi,X2,X3 in a normalized filter characterized by the weights 
(1, e i ) ; (1, 62); (1, 63) for the rows 1, 2 and 3 respectively. For the first row we 
would have 

XQ + e\ • x\ x\ + e\ • X2 X2 + e\ • x% 

For the second row, 

XQ + e\ • x\ + e2 • (x\ + e\ • X2) x\ + e\ • X2 + &2 • (X2 + e\ • X3) 

Finally, for the third row, 

xo + ei • x\ + e2 • (x\ + e\ • X2) + e3 • (x\ + e\ • X2 + e2 • (x2 + e\ • X3)) = 

= XQ + x\ • (ei + e2 + 63) + X2 • (ei • 62 + e\ • e$ + 62 • e^) + X3 • (e\ • e2 • 63) 



It is clear that the global weights are the sum of the products of the combinations 
of local weights taken 0 by 0, 1 by 1, 2 by 2, etc. 

In general, if we have a discrete filter with weights (wo, w i , . . . , wn) and construct 
a normalization 

/ W\ U>2 wn N 

u>o' wo ' wo 
we obtain the micro-processes weights of the Generalized Newton Filter from the 
solutions of the following system of equations: 

WQ 

W2 

wo 
W3 

WQ 

= e\ + C2 + en 

= e\e2 + eie3 + . .. + e2e^ + e^e^ + .. . + e n_ie n 

= eie2e3 + eie2e4 + . .. + e\e2en + eie3e4 + . .. + en-2en-ien 

WQ 
= ei • e2 • e3 .. . en 

In general, the solutions of this non-linear system of equations do not have to be real 
numbers for arbitrary Wj. It follows that by the relationship between the coefficients 
and the roots of a polynomial of n degree, the solutions, ej, of this system are the 
roots of the polynomial: 

P(x) = x™ 
WQ 

X - 1 + ^ 
WQ 

jri — 2 — . . . ( —1) 
n w n 

— = 0 
WQ 

(2) 

When solving the inverse problem, that is, going from a set of given receptive field 
weights, Wj, to local units weights, ej, complex roots can not be accepted as possible 
weights in a Generalized Newton Filter. In this case, pairs of complex roots of the 
form (a+ j/3) and (a — j/3) correspond to a three input computing unit having real 
weights [(a2 + /32), 2a, 1], as illustrated in figure 7. 

= (oc+P 

Figure 7. Reduction of complex roots for real representations. 

As a conclusion, i t is shown that any linear layered computation net having 
arbitrary receptive field weights is equivalent or can be represented by a multilayered 
net composed of two and three inputs units, which corresponds to a representation 
of a Generalized Newton Filter. And again, the multilayered net of 2-3 inputs units 
can be broken down to any smaller number of layers, where each computing unit of 
the resulting layers compute local Generalized Newton Filter weights, on receptive 
fields that overlap. 



3.1. Representation by Hermite functions. It has been proven elsewhere that 
the extension of the Newton Filters introduced in previous sections to the continuum 
leads to Hermite functions and functionals [21]. Limit Theorems [4] show that 
weights for the Newton Filter N(An), i.e., 

, , ( n \ , 
iv (An ) = , 0 < x < n 

x 

appropriately normalized, converge, for n large, to the gaussian factor: 

f(x) = e-x" (3) 

Similarly, weights in the Newton Filter N(An, D\) converge to the first derivative 
of / (x) , i.e., 

f'(x) = —2x • e~x 

Filters N(An, Dj) with j = 2 , . . . , m at the limit when n is large enough, produce 
the successive derivatives of / (x) : 

f"(x) = (4x — 2)•e~ x 

fm(x) = e-x 

dxm 

These functions are the Hermite functions, H, multiplied by a ( — 1)™ factor. The 
polynomials accompanying the gaussian factor e~x are the so called Hermite Poly­
nomials [31], [7], for which a generating function is (Rodrigues’ formula): 

Hn(x) = ( — 1)nex—e~x 

dxn 

As we can observe in figures 8(a), 8(b), 8(c), 8(d) and 8(e) there is a high similarity 
between those profiles and the sensitivities describing the neuronal receptive fields, 
mostly retinal ganglion cells [28], [13], [34], [35]. We have both ON-OFF (negative-
positive) center-periphery structures and structures alternating ON and OFF zones, 
when time is included. 

The above can be extended to two dimensions by the bidimensional kernels, 

Hn(x)Hm(y)e~^x +v ' 

where 

f)n 2 2 f)"1 2 2 
Hn(x) = z—e-t* +y ] Hm(y) = e~^x +y ] 

oxn oym 

For rotationally symmetric (radial) fields, the weighting Hermite profile of order 
n is given by: 

dn < [ o . ] . 
Wn(r) = ±— [exp —r 2) 

drn 

where r is the distance to the center and the order n indicates the number of 
inhibitory layers in the microstructure [21], [19]. 
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Figure 8. The first five Hermite functions. 

The second order Hermite profile is precisely the “mexican hat”, that since David 
Marr’s Laplacian of Gaussians [16], has been accepted as a better center-periphery 
“visual filter” rather than the alternative difference of Gaussians [26], [30]. 

For R0 the radius of the excitatory center, the radial second order Hermite profile 
is: 

W('*) = (1 — r /i?0) • expy — r /2i?0] 

with r2 = x2 + y2. This is shown in figure 9(a) 
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Figure 9. (a) Center-periphery structure of receptive field, cor­
responding to the second order Hermite profile. (b) Cumulative 
activity from the field in (a) for long lasting excitatory-inhibitory 
effects, for a local stimulus moving diametrally from left to right. 
Note that excitatory activity only appears during centrifugal mo­
tion. 

Real receptive fields of, say, retinal ganglion cells, are at the end, the result of the 
convergence of different layers of other retinal cells. Though these receptive fields 
are better represented by structures like layers of discrete Newton filters shown 
before, the continuum representations given by Hermite structures provide for good 
insight to functions in space-time, that could afterwards be retranslated to discrete 
structures. 

That is the case when there are delays or lasting effects due, for example, to 
relatively long lasting depolarizing and hyperpolarizing effects in center-periphery 
receptive fields, where directionality appears [2]. 

In the case of the Mexican hat profile of figure 9(a) for a local stimulus crossing 
diametrally the receptive field of the cell, and for relatively long lasting depolarizing-
hyperpolarizing actions, the cumulative activity of the cell, when the stimulus 
reaches point r, is proportional to the integral, from the left border (-co) to r, 
of W2(r), that is, 

r 
Ac(r) = / W2(r) dr = r • exp[ — r /2i?0] 

—oo 

which is the Hermite profile of order 1. Ac(r) is shown in figure 9(b). It can be seen 
there that the cumulative activity is excitatory only during the centrifugal motion 
of the stimulus (right lobule of figure), even if the motion is started at the center, 
because the cumulative activity is null there. 

Notice that the above structure can correspond to a whole ganglion cell. In this 
case the cell will show a centrifugal directional selectivity, in addition to other local 
ON-OFF, contrast detector properties. Time ago, classical centripetally directional 
selective retinal ganglion cells (besides being locally ON-OFF) have been described 
for Group 2 ganglion cells in frogs [17], [18]. It would correspond to an inhibitory-
center, excitatory-surround situation, that is, to —W(r). 
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Figure 10. (a) A double ring receptive field, represented by a 4th 
order Hermite profile. Note the central excitatory area, surrounded 
by a first inhibitory ring and a second excitatory one. (b) The 
cumulative activity for a local stimulus moving diametrally from 
left to right, provokes first a sensitivity to centripetal motion and 
then a centrifugal selectivity. 

For global receptive fields of ganglion cells there is a possibility of a “multiple 
ring” structure alternating excitatory-inhibitory zones [6], [12], [32]. This is repre-
sentable by radial Hermite functions of higher order. Figure 10(a) shows a fourth 
Hermite weighting kernel, corresponding to the even radial kernel 

Wi(r) = (r — 6r + 3) • exp[ — r /2] 

which consists of a center excitatory zone surrounded by an inhibitory ring and an 
additional far excitatory ring area. Again, when lasting excitation and inhibition 
are included, there appear peculiar directional sensitivity effects. The cumulative 
activity Ac for a diametrally crossing stimulus is 

Ac(r) = (r — 3r) • exp[ — r /2] 

which is the third order Hermite profile, shown in figure 10(b). Notice that 
for said stimulus, there is centripetal selectivity at the first moment, to became 
centrifugal selectivity as the stimulus leaves the receptive field. 

When the kernel or weighting function is not of rotational symmetry there are 
a variety of potential directionality properties, depending on the latencies of the 
excitatory and inhibitory areas. The preferred direction points from the excitatory 
to the inhibitory zones. The simplest case which corresponds to a single inhibitory 
layer in the x direction for the Newton Filters representation, is the Hermite bidi-
mensional kernel of order 1, given by 

8 9 ] 1 
Hx = ——[exp (—r /2) = x • exp (—r /2) 

ox 
This kernel is represented in figure 11, where a preferred direction and an optimum 
position and orientation for a bright edge detection are shown. 

Zonal directional selectivity appears when there are inhibitory layers in the x 
and/or y directions of the microstructure represented by the bidimensional discrete 
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F i g u r e 11. Preferred direction and optimum position (orienta­
tion) by a first order bidimensional Hermite kernel, corresponding 
to one microstructure inhibition in the x direction. 

Newton Filters. In the continuum generalization, to each inhibitory microstructure 
in one direction corresponds a partial derivative, giving rise to the corresponding 
two dimensional Hermite kernel. 

For example, for one inhibitory layer in each direction x and y of the microstruc­
ture, the resulting kernel is: 

Hxy 
d2Ho 
dxdy 

= xy • exp (— r /2) 

This kernel is represented in figure 12. Favored directions are from excitatory 
to inhibitory zones. Notice that there is a null direction normal to an optimum 
direction, as it is indicated in the figure. Also, it shows a “corner” type optimum 
detection (bright corners edges entering the optimum direction). 

As an additional illustration of the potentials of two dimensional Newton Filters 
and the corresponding continuum Hermite kernels, let us consider the case of two 
inhibitory layers in the x direction and two in the y direction. It corresponds to the 
bidimensional Hermite kernel of order four: 

H-xxyy 
8AHQ 

d2xd2y 
= (x — 1)(y — 1) • exp (—r /2) 

This kernel is shown in figure 13, where one can see the existence of a centre 
excitatory area surrounded by a ring with alternating excitatory and inhibitory 
zones, showing a more complex pattern of optimum positions and orientations for 
edges and preferred directions. 

Though Hermite functions are a very appropriate analytical representation for 
sensorial neuronal receptive fields, in many cases this is only valid for small ranges, 
and also excluding non-linearities. 

However, their microstructural substrate, provided by discrete Newton Filters, 
point to convenient generalizations to the continuum to cover situations like the 
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Figure 12. Second order Hermite kernel showing normal null-
optimum directions and preferred zones for optimum position and 
orientation. 
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Figure 13. Fourth order Hermite kernel with a ring of alternating 
excitatory and inhibitory zones. 

“widening” of the inhibitory periphery in center-periphery quasi-linear neurons [33]; 
the non linear interactions between excitatory and inhibitory subfields and the ex­
istence of sustained linear and non linear responses. 

These refinements, do not change the nature of the asymmetries due to non 
rotational Hermite kernels but provide for better approaches to the experimental 
results. 

The main objection to Marr’s proposal of the second derivative of a Gaussian as 
a spatial model for linear ganglia, comes from two facts: first, the surrounding OFF 
or inhibitory ring is much wider in real cells than it is predicted by said filter [33]. 
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F i g u r e 14. Widening of the inhibitory ring (continuous line) as a 
consequence of lowering the resolution from center to periphery by 
a factor r' = r1 '3. 

Widening of the inhibitory ring may be a consequence of lowering the resolution 
from center to periphery in real receptive fields and its Newton Filter representa­
tions. In the case of the Hermite kernel representation this would be a kind of 
widening the scale for the r coordinate as going from center to periphery. Figure 14 
illustrates this effect for an expansion of the type r' = r1 '3. 

The second effect is the “no null” response to uniform illumination. This other 
non linearities are due to the interaction of excitatory and inhibitory components 
of signals, which can give rise to sustained responses under constant uniform stim­
ulation. This is the case for a local realistic rectifying non linearity of the form: 

F[H(x,y)] = [exp(kH) — 1], k < 1 
Figure 15 illustrates changes in the kernel for the Mexican hat H2 and k = 0.4. 
Notice the decrease in amplitude of the inhibitory ring, resulting in a non-zero 
positive value for the mean value of kernel F. 
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Figure 15. Decreasing of the amplitude for the inhibitory ring 
(continuous line) in the case of the H 2 kernel. 

4. Simulations. A computer tool developed [20] can provide both for the analysis 
and the synthesis of receptive fields in one dimension. That is, given local weights 

A 



of the units, one weight per layer, the global weighting of the terminal computing 
unit is found and vice versa, from a given (arbitrary, real numbers) string (row) of 
weights, that is, a kind of receptive field “mask”, the application finds the weighting 
associated to each layer. 

In the process of calculating the global weighting profile, the application allows 
to introduce the number of inputs x i and the local weights per layer in the form of 
pairs (a i , b i) or (1 , e i). Once computed, the application shows the global weights in 
a grid and the graphic of the weighting profile in two windows: one with a horizontal 
linear scale and the other with a non linear horizontal scale, that can be used to 
simulate the lowering of resolution from center to periphery. 

The inverse problem, that is, given a weighting profile, to find the local weights, 
is also solved by the tool. As i t was shown in section 3, this process implies find­
ing the roots of a polynomial of degree n (see equation 2), by the Jenkins-Traub 
algorithm [24]. 
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Figure 16. Outputs from the tool. (a) Total weight profile for 
Newton Filter N(A10 , D4). (b) Arbitrarily chosen receptive field 
weights profile. (c) Sample of three-inputs units weights of the net. 

Figure 16(a) shows a part of the main screen view of the tool for a case similar 
to that in figure 2 with 15 input lines and local weights from filter N(A10 , D4). 
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The inverse problem is illustrated in figure 16(b) for an arbitrary receptive field 
sensitivity (amplitudes corresponding to the profile of a landscape in Gran Canaria). 
A sample of the corresponding local weights is in figure 16(c) where it can be seen 
that most of them correspond to three-input units (the third value, which is 1, is 
omitted in the figure). 
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Figure 17. Effects of lesions in a dendritic-like structure of 80 
input lines. Lesion in layer 78 with four subtractive layers at (a) 
the middle of the structure and (b) the end of the structure. 

This tool has been extended to include ‘holes’ or lesions (scotomas) in arbitrary 
parts of the net [3]. As i t would be expected from the topology of the net, the 
lesions affect the computational profile differently as they are produced closer to 
the final node (or cell body) or in the (few) inhibitory layers. The topology of the 
net could be changed to other than triangular form, as i t happens in real neurons. 

Figures 17(a) and 17(b) illustrate the effect of lesions in a dendritic-like structure 
of 80 input lines, with four inhibitory layers. They show the changes in the weighting 
function (kernel) after the lesions indicated in the left part of the figures. The black 
lines in the triangular structure show the position of inhibitory layers. The heavy 
line in graphics corresponds to the weighting function after lesion. 

Figures 18(a) and 18(b) illustrate the effect of scotomas also close to the cell body. 
In this case, the local lateral inhibition takes place in the outer computational layers, 
in a number of 15 layers in each case. Comparing with results in figure 17, it can 
be seen that the nature of the computation is less affected when lateral inhibition 
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Figure 18. Illustration of the effect of scotomas in late layers 
(close to the cell body) when the computational peculiarities (in 
this case, lateral inhibition) takes place in more outer layers. Fig­
ure (a) corresponds to the first 15 layers being inhibitory and the 
scotomas (three) in layer 96, for a “retina” of 100 inputs. Figure 
(b) corresponds to the same situation with two scotomas. 

takes place in outer layers (early in the net). Also, the sensitivity to higher spatial 
frequencies is less affected, the main loose being of amplitude sensitivity. 

5. Conclusions and discussion. Newton Filters and Hermite functions have been 
originally introduced to model processes and computations that take place in the 
receptive field of retinal cells. Given these computational structures, the analysis 
and synthesis of receptive fields is straightforward: given the microstructure of a 
receptive field the weight pattern can be found and, given a receptive field with 
a given weight profile, one can have the microstructure having that weight profile 
as its output. These results have also been extended to study the reliability of 
the computing nets, that is, the performance of the net in the presence of holes or 
lesions in such nets. These results should be connected with the reorganization of 
the receptive fields of neurons found after lesions [5, 27]. 

The linearity of the discrete filters presented here appears as a limitation of 
our formulation. However, the most relevant computing non linearities that have 
been documented in the physiological literature are local nonlinearities of the “feed 
forward” type, where classical methods of analysis (as Liapunov second method) 
have no sense of application. Rather, Wiener-Volterra or white noise and wavelet 
type of analysis are more appropriate although their formulations and theory do 
not provide any insight into the fine structural (microstructure) of the net. Since 
Marmarelis [14, 15], white noise and other input-output systems theoretical types 
of analysis seem to show that the relevant is a type of diode effect. In general, our 
proposal allows for the introduction of nonlinearities of the global general type that 
have been experimentally found, for the discrete and continuous settings, and this 
should be further explored. In general, nonlinearities distributed at the interme­
diate layers of the net cannot be resolved into a closed mathematical form for the 
output computing agent, and computer simulation will be required. But even then, 
Newton Filters representations are a good starting frame, as i t was pointed in the 
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text. Distributed nonlinearities can be sometimes approximated by summarizing 
functionals at the output. 

I t must be remarked that all references to real neurons are highly and strictly 
paradigmatic, since our proposals are at the level of systems theory. We are not 
considering coding herein. All in all, results analytically obtained in this paper 
contribute to the hard task of describing the complex processes that take place 
in living organisms, given their similarity to those records obtained by artificial 
stimulation of cells. 
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