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Extended Abstract

The aim is to obtain computationally more powerful, neurophysiologically
founded, artificial neurons and neural nets.

Artificial Neural Nets (ANN) of the Perceptron type evolved from the original
proposal by McCulloch an Pitts classical paper [1]. Essentially, they keep the
computing structure of a linear machine followed by a non linear operation. The
McCulloch-Pitts formal neuron (which was never considered by the authors to
be models of real neurons) consists of the simplest case of a linear computation
of the inputs followed by a threshold. Networks of one layer cannot compute any
logical function of the inputs, but only those which are linearly separable. Thus,
the simple exclusive OR (contrast detector) function of two inputs requires two
layers of formal neurons.

Those logical limitations where overcome by McCulloch and Blum [2] by
a formalization of the, by then recently encountered, presynaptic inhibition in
Rana Pipiens. In essence, fibres reaching a neuron bifurcate in a way that they
may drastically inhibit other input fibers to the neuron. Posterior and more
recent findings emphasize the importance and role of presynaptic inhibition and
facilitation in the complexity of neuronal computation [3], [4], [5].

The systematic formulation of presynaptic inhibition, for logical functions,
consists in substituting the simple linear weighted addition prior to the non-
linear operation given by the threshold function. Thus, the typical weighted
summing computation (for x1, . . . , xn lines)

∑
αixi is, in general, substituted

by the more complete (redundant) operation
∑

i

αixi +
∑

ij

αijxix̄j +
∑

ijk

αijkxix̄j x̄k + · · · (1)

where x̄i denotes logical negation; xix̄j denotes presynaptic inhibition of fiber
xi by fiber xj ; xix̄j x̄k . . . denotes the presynaptic inhibition of xi by xj , xk,
and so on. Figure 1 illustrates equation 1 where small ’loops’ indicate inhibition
presynaptic to the neuron. In formal neural nets, the inhibition is total, that is,
the ’loop’ completely inhibits the input signal xi.
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Fig. 1. Illustration of general lateral inhibition interaction of afferents for McCulloch-
Pitts neurons.

For a single unit with a fixed threshold, the number of degrees of freedom
for M inputs lines, is

M + M(M − 1) + M

(
M − 1

2

)
+ · · · +

(
M − 1
M − 2

)
+ M = M · 2M−1

which is larger than the number of possible functions for M inputs, 2M , and
which clearly points to the redundances effects provoked by the presynaptic
inhibition.

It can be argued that this redundancy can be used to increase reliability for a
net computing any arbitrary logical function. In fact, there is a trade off between
reliability and versatility provoked by the presynaptic inhibition.

We propose a natural generalization of the logical formulations of presynaptic
inputs inhibitory interaction, which allows for a richer model of formal (artifi-
cial) neuron, whose potentialities as computing units are to be investigated. The
formulation reduces to classical interaction of afferents for logical inputs.

First, normalize input signals so that 0 ≤ xi ≤ 1. The presynaptic inhibition
of signal xi by signal in fiber j, xj is given by a multiplicative effect xi(1 − xj).
Similarly, for the rest of the fibers.

Thus, the argument of the activation function of the corresponding artificial
neuron, is

A =
∑

i

αixi +
∑
ij

αijxi(1 − xj) +
∑
ijk

αijkxi(1 − xj)(1 − xk) (2)

If F is the activation function, the output, y, of the AN is

y(k + 1) = F [A(k)] discrete time

dy

dt
= ẏ = F [A(t)] continuous time
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Fig. 2. Examples of two realizations for an AN computing the ’exclusive OR’. a) Neu-
ron in this figure is more versatile in the sense that relatively small changes in the
activation function (e.g. a thresholding ) provokes significant changes in the discrimi-
nating behaviour. b) Neuron in this figure is more insensitive to threshold changes.

In general, for an ANN with arbitrary feedback, the expressions are similar
than those of formal neural nets [7], [8]. In the present case, the networks are
given by

yi(k + 1) = F [A(x1(k) . . . xM (k); y1(k) . . . yN (k))] i = 1, 2, . . . , N

or

ẏ(t) = F [A(x1(t) . . . xM (t); y1(t) . . . yN (t))]

The activation function F is assumed to be the same for all neurons of the
net. Essentially, the new formulation substitutes the linear activation argument
of typical ANN (Hopfield type) formulations for a neurophysiological plausible
non-linear argument, result of presynaptic interaction.

As preliminary results, various examples are presented of non linear acti-
vation arguments and their input pattern discriminatory power, their reliability
and their functional versatility (range of functions that can be computed by each
AN). This is illustrated for the case of an AN of two inputs, in Figure 2. Fig-
ures 2(a) and 2(b) are two realizations for the ’exclusive OR’ (contrast detection).
Neuron in figure 2(a) is more ’versatile’ in the sense that relatively small changes
in the activation function (e.g. a thresholding), provokes significant changes in
the discriminating behaviour. Neuron in figure 2(b) is more insensitive to thresh-
old changes. The corresponding activation arguments are shown in Figure 3(a)
and 3(b).
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Fig. 3. Activation arguments of AN in Figure 2(a) and 2(b). Notice that the patterns
[(only x1)] and [(only x2)] are better discriminated by activation argument in figure 3(b)
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