661 research outputs found
Superconductivity of SrTiO_{3-\delta}
Superconducting SrTiO_{3-\delta} was obtained by annealing single crystalline
SrTiO_3 samples in ultra high vacuum. An analysis of the V(I) characteristics
revealed very small critical currents I_c which can be traced back to a
unavoidable doping inhomogeneity. R(T) curves were measured for a range of
magnetic fields B at I<<I_c, thereby probing only the sample regions with the
highest doping level. The resulting curves B_{c2}(T) show upward curvature,
both at small and strong doping. These results are discussed in the context of
bipolaronic and conventional superconductivity with Fermi surface anisotropy.
We conclude that the special superconducting properties of SrTiO_{3-\delta} can
be related to its Fermi surface and compare this finding with properties of the
recently discovered superconductor MgB_2.Comment: EPJ style, 6 pages, 8 figures; minor changes, Fig. 5 replaced; use
PDF version for printout
Electron spectra close to a metal-to-insulator transition
A high-resolution investigation of the electron spectra close to the
metal-to-insulator transition in dynamic mean-field theory is presented. An
all-numerical, consistent confirmation of a smooth transition at zero
temperature is provided. In particular, the separation of energy scales is
verified. Unexpectedly, sharp peaks at the inner Hubbard band edges occur in
the metallic regime. They are signatures of the important interaction between
single-particle excitations and collective modes.Comment: RevTeX 4, 4 pages, 4 eps figures; published versio
Measuring correlated electron dynamics with time-resolved photoemission spectroscopy
Time-resolved photoemission experiments can reveal fascinating quantum
dynamics of correlated electrons. However, the thermalization of the electronic
system is typically so fast that very short probe pulses are necessary to
resolve the time evolution of the quantum state, and this leads to poor energy
resolution due to the energy-time uncertainty relation. Although the
photoemission intensity can be calculated from the nonequilibrium electronic
Green functions, the converse procedure is therefore difficult. We analyze a
hypothetical time-resolved photoemission experiment on a correlated electronic
system, described by the Falicov-Kimball model in dynamical mean-field theory,
which relaxes between metallic and insulating phases. We find that the
real-time Green function which describes the transient behavior during the
buildup of the metallic state cannot be determined directly from the
photoemission signal. On the other hand, the characteristic
collapse-and-revival oscillations of an excited Mott insulator can be observed
as oscillating weight in the center of the Mott gap in the time-dependent
photoemission spectrum.Comment: 12 pages, 5 figure
New method for the time calibration of an interferometric radio antenna array
Digital radio antenna arrays, like LOPES (LOFAR PrototypE Station), detect
high-energy cosmic rays via the radio emission from atmospheric extensive air
showers. LOPES is an array of dipole antennas placed within and triggered by
the KASCADE-Grande experiment on site of the Karlsruhe Institute of Technology,
Germany. The antennas are digitally combined to build a radio interferometer by
forming a beam into the air shower arrival direction which allows measurements
even at low signal-to-noise ratios in individual antennas. This technique
requires a precise time calibration. A combination of several calibration steps
is used to achieve the necessary timing accuracy of about 1 ns. The group
delays of the setup are measured, the frequency dependence of these delays
(dispersion) is corrected in the subsequent data analysis, and variations of
the delays with time are monitored. We use a transmitting reference antenna, a
beacon, which continuously emits sine waves at known frequencies. Variations of
the relative delays between the antennas can be detected and corrected for at
each recorded event by measuring the phases at the beacon frequencies.Comment: 9 pages, 9 figures, 1 table, pre-print of article published in
Nuclear Inst. and Methods in Physics Research, A, available at:
http://www.sciencedirect.com/science/article/B6TJM-4Y9CF4B-4/2/37bfcb899a0f387d9875a5a0729593a
Brueckner-Goldstone perturbation theory for the half-filled Hubbard model in infinite dimensions
We use Brueckner-Goldstone perturbation theory to calculate the ground-state
energy of the half-filled Hubbard model in infinite dimensions up to fourth
order in the Hubbard interaction. We obtain the momentum distribution as a
functional derivative of the ground-state energy with respect to the bare
dispersion relation. The resulting expressions agree with those from
Rayleigh-Schroedinger perturbation theory. Our results for the momentum
distribution and the quasi-particle weight agree very well with those obtained
earlier from Feynman-Dyson perturbation theory for the single-particle
self-energy. We give the correct fourth-order coefficient in the ground-state
energy which was not calculated accurately enough from Feynman-Dyson theory due
to the insufficient accuracy of the data for the self-energy, and find a good
agreement with recent estimates from Quantum Monte-Carlo calculations.Comment: 15 pages, 8 fugures, submitted to JSTA
Optical properties of small polarons from dynamical mean-field theory
The optical properties of polarons are studied in the framework of the
Holstein model by applying the dynamical mean-field theory. This approach
allows to enlighten important quantitative and qualitative deviations from the
limiting treatments of small polaron theory, that should be considered when
interpreting experimental data. In the antiadiabatic regime, accounting on the
same footing for a finite phonon frequency and a finite electron bandwidth
allows to address the evolution of the optical absorption away from the
well-understood molecular limit. It is shown that the width of the multiphonon
peaks in the optical spectra depends on the temperature and on the frequency in
a way that contradicts the commonly accepted results, most notably in the
strong coupling case. In the adiabatic regime, on the other hand, the present
method allows to identify a wide range of parameters of experimental interest,
where the electron bandwidth is comparable or larger than the broadening of the
Franck-Condon line, leading to a strong modification of both the position and
the shape of the polaronic absorption. An analytical expression is derived in
the limit of vanishing broadening, which improves over the existing formulas
and whose validity extends to any finite-dimensional lattice. In the same
adiabatic regime, at intermediate values of the interaction strength, the
optical absorption exhibits a characteristic reentrant behavior, with the
emergence of sharp features upon increasing the temperature -- polaron
interband transitions -- which are peculiar of the polaron crossover, and for
which analytical expressions are provided.Comment: 16 pages, 6 figure
Single-Particle Dynamics in the Vicinity of the Mott-Hubbard Metal-to-Insulator Transition
The single-particle dynamics close to a metal-to-insulator transition induced
by strong repulsive interaction between the electrons is investigated. The
system is described by a half-filled Hubbard model which is treated by dynamic
mean-field theory evaluated by high-resolution dynamic density-matrix
renormalization. We provide theoretical spectra with momentum resolution which
facilitate the comparison to photoelectron spectroscopy.Comment: 22 pages, 24 figures, comprehensive high-resolution study of single
electron dynamics around a Mott metal-insulator transition, with momentum
resolved spectral densities; slight changes due to referees' suggestion
Simulation of Ultra-High Energy Photon Propagation in the Geomagnetic Field
The identification of primary photons or specifying stringent limits on the
photon flux is of major importance for understanding the origin of ultra-high
energy (UHE) cosmic rays. We present a new Monte Carlo program allowing
detailed studies of conversion and cascading of UHE photons in the geomagnetic
field. The program named PRESHOWER can be used both as an independent tool or
together with a shower simulation code. With the stand-alone version of the
code it is possible to investigate various properties of the particle cascade
induced by UHE photons interacting in the Earth's magnetic field before
entering the Earth's atmosphere. Combining this program with an extensive air
shower simulation code such as CORSIKA offers the possibility of investigating
signatures of photon-initiated showers. In particular, features can be studied
that help to discern such showers from the ones induced by hadrons. As an
illustration, calculations for the conditions of the southern part of the
Pierre Auger Observatory are presented.Comment: 41 pages, 9 figures, added references in introduction, corrected
energy in row 1 of Table 3, extended caption of Table
Determination of the branching ratios and
Improved branching ratios were measured for the decay in a
neutral beam at the CERN SPS with the NA31 detector: and .
From the first number an upper limit for and transitions in neutral kaon decay is derived. Using older results for the
Ke3/K3 fraction, the 3 branching ratio is found to be , about a factor three more
precise than from previous experiments
- …