804 research outputs found

    Random copolymer adsorption: Morita approximation compared to exact numerical simulations

    Full text link
    We study the adsorption of ideal random lattice copolymers with correlations in the sequences on homogeneous substrates with two different methods: An analytical solution of the problem based on the constrained annealed approximation introduced by Morita in 1964 and the generating functional (GF) technique, and direct numerical simulations of lattice chains averaged over many realizations of random sequences. Both methods allow to calculate the free energy and different conformational characteristics of the adsorbed chain. The comparison of the results for random copolymers with different degree of correlations and different types of nonadsorbing monomers (neutral or repelling from the surface) shows not only qualitative but a very good quantitative agreement, especially in the cases of Bernoullian and quasi-alternating random sequences.Comment: 19 pages, 9 figure

    Adsorption of a random heteropolymer at a potential well revisited: location of transition point and design of sequences

    Full text link
    The adsorption of an ideal heteropolymer loop at a potential point well is investigated within the frameworks of a standard random matrix theory. On the basis of semi-analytical/semi-numerical approach the histogram of transition points for the ensemble of quenched heteropolymer structures with bimodal symmetric distribution of types of chain's links is constructed. It is shown that the sequences having the transition points in the tail of the histogram display the correlations between nearest-neighbor monomers.Comment: 11 pages (revtex), 3 figure

    The Effects of Stacking on the Configurations and Elasticity of Single Stranded Nucleic Acids

    Full text link
    Stacking interactions in single stranded nucleic acids give rise to configurations of an annealed rod-coil multiblock copolymer. Theoretical analysis identifies the resulting signatures for long homopolynucleotides: A non monotonous dependence of size on temperature, corresponding effects on cyclization and a plateau in the extension force law. Explicit numerical results for poly(dA) and poly(rU) are presented.Comment: 4 pages and 2 figures. Accepted in Phys. Rev. E Rapid Com

    Localization in simple multiparticle catalytic absorption model

    Full text link
    We consider the phase transition in the system of n simultaneously developing random walks on the halfline x>=0. All walks are independent on each others in all points except the origin x=0, where the point well is located. The well depth depends on the number of particles simultaneously staying at x=0. We consider the limit n>>1 and show that if the depth growth faster than 3/2 n ln(n) with n, then all random walks become localized simultaneously at the origin. In conclusion we discuss the connection of that problem with the phase transition in the copolymer chain with quenched random sequence of monomers considered in the frameworks of replica approach.Comment: 17 pages in LaTeX, 5 PostScript figures; submitted to J.Phys.(A): Math. Ge

    Genomic Medicine

    Get PDF
    The human genome project created the field of genomics – understanding genetic material on a large scale. Scientists are deciphering the information held within the sequence of our genome. By building upon this knowledge, physicians and scientists will create fundamental new technologies to understand the contribution of genetics to diagnosis, prognosis, monitoring, and treatment of human disease. The science of genomic medicine has only begun to affect our understanding of health

    Influence of the structural modulations and the Chain-ladder interaction in the Sr_14−xCa_xCu_24O_41Sr\_{14-x}Ca\_{x}Cu\_{24}O\_{41} compounds

    Full text link
    We studied the effects of the incommensurate structural modulations on the ladder subsystem of the Sr_14−xCa_xCu_24O_41Sr\_{14-x}Ca\_{x}Cu\_{24}O\_{41} family of compounds using ab-initio explicitly-correlated calculations. From these calculations we derived t−Jt-J model as a function of the fourth crystallographic coordinate τ\tau describing the incommensurate modulations. It was found that in the highly calcium-doped system, the on-site orbital energies are strongly modulated along the ladder legs. On the contrary the two sites of the ladder rungs are iso-energetic and the holes are thus expected to be delocalized on the rungs. Chain-ladder interactions were also evaluated and found to be very negligible. The ladder superconductivity model for these systems is discussed in the light of the present results.Comment: 8 octobre 200

    The non-centrosymmetric lamellar phase in blends of ABC triblock and ac diblock copolymers

    Full text link
    The phase behaviour of blends of ABC triblock and ac diblock copolymers is examined using self-consistent field theory. Several equilibrium lamellar structures are observed, depending on the volume fraction of the diblocks, phi_2, the monomer interactions, and the degrees of polymerization of the copolymers. For segregations just above the order-disorder transition the triblocks and diblocks mix together to form centrosymmetric lamellae. As the segregation is increased the triblocks and diblocks spatially separate either by macrophase-separating, or by forming a non-centrosymmetric (NCS) phase of alternating layers of triblock and diblock (...ABCcaABCca...). The NCS phase is stable over a narrow region near phi_2=0.4. This region is widest near the critical point on the phase coexistence curve and narrows to terminate at a triple point at higher segregation. Above the triple point there is two-phase coexistence between almost pure triblock and diblock phases. The theoretical phase diagram is consistent with experiments.Comment: 9 pages, 8 figures, submitted to Macromolecule

    Effect of confinement on coil-globule transition

    Full text link
    The equilibrium thermodynamic properties of a linear polymer chain confined to a space between two impenetrable walls (lines) at a distance DD under various solvent conditions have been studied using series analysis and exact enumeration technique. We have calculated the end to end distance of polymer chain, which shows a non-monotonic behaviour with inter wall ^M separation DD. The density distribution profile shows a maxima at a particular value of (D=)D∗{(D=)}D^*. Around this D∗D^*, our results show that the collapse^M transition occurs at higher temperature as compared to its bulk value of 2d and 3d. The variation of θ−\theta- temperature with DD shows a re-entrance behaviour. We also calculate the force of compression exerted by the walls (lines) on the polymer.Comment: 11 pages with 7 eps figure
    • …
    corecore