140 research outputs found

    Assessing the cumulative environmental effects of marine renewable energy developments: establishing common ground

    Get PDF
    Assessing and managing the cumulative impacts of human activities on the environment remains a major challenge to sustainable development. This challenge is highlighted by the worldwide expansion of marine renewable energy developments (MREDs) in areas already subject to multiple activities and climate change. Cumulative effects assessments in theory provide decision makers with adequate information about how the environment will respond to the incremental effects of licensed activities and are a legal requirement in many nations. In practise, however, such assessments are beset by uncertainties resulting in substantial delays during the licensing process that reduce MRED investor confidence and limit progress towards meeting climate change targets. In light of these targets and ambitions to manage the marine environment sustainably, reducing the uncertainty surrounding MRED effects and cumulative effects assessment are timely and vital. This review investigates the origins and evolution of cumulative effects assessment to identify why the multitude of approaches and pertinent research have emerged, and discusses key considerations and challenges relevant to assessing the cumulative effects of MREDs and other activities on ecosystems. The review recommends a shift away from the current reliance on disparate environmental impact assessments and limited strategic environmental assessments, and a move towards establishing a common system of coordinated data and research relative to ecologically meaningful areas, focussed on the needs of decision makers tasked with protecting and conserving marine ecosystems and services

    Design and fabrication of a low-specific-weight parabolic dish solar concentrator

    Get PDF
    A segmented design and fabrication and assembly techniques were developed for a 1.8 m (6 ft) diameter parabolic concentrator for space application. This design and these techniques were adaptable to a low cost, mass-produced concentrator. Minimal machining was required. Concentrator segments of formed magnesium were used. The concentrator weighed only 1.6 kg sq m (0.32 lbm/sq ft)

    The application of passive sampler (DGT) technology for improved understanding of metal behaviour at a marine disposal site

    Get PDF
    Metal behaviour and availability at a contaminated dredge material disposal site within UK waters has been investigated using Diffusive Gradient in Thin films (DGT) passive sampling technology. Three stations representing contrasting history and presence of maintenance dredge disposal, including a control station outside the disposal site, have been studied and depth profiles of fluxes of different metals (Fe, Mn, Pb, Cu, Cd, Cr, Ni, Zn) to the binding gel (Chelex 100) have been derived. Higher flux rates and shallower mobilisation of metals (Mn and Fe) to the binding gel were observed at the disposal stations compared to the control station. Here we describe metal mobilization at different depths, linking the remobilization of Fe2+ and Mn2+ to the sediment (re)supply of other heavy metals of interest with a focus on Cd, Ni and Pb and as they are on the Water Framework Directive (WFD) list of priority substances and OSPAR list of priority pollutants. Results showed that Cd, Pb and Ni exhibited signs of resupply at the sediment-water interface (SWI). There was a potential increased mobilisation and source to the water column of Pb and Ni at the disposal site stations, but there was no Cd source, despite higher total loadings. This information has the potential to improve our current understanding of metal cycles at disposal sites. This work can be used as an indication of likely metal bioavailability and also assist in determining whether the sites act as sources or sinks of heavy metals. This information could assist disposal site monitoring and dredge material licensing

    Dynamic Interactions among Boundaries and the Expansion of Sustainable Aquaculture

    Get PDF
    Aquaculture is the fastest growing food production system in the world, generating more than half of the global seafood harvested today. These type of activities are crucial to provide key nutritional components for humanity in the future as populations worldwide are increasing and the demands for securing food resources are imperative. Multiple socio-ecological factors such as weak regulations and focus on maximizing production limit production and threaten the sustainable growth of aquaculture. We present a novel policy framework to evaluate and pursue growth in aquaculture considering four boundaries: biological productivity, environmental constraints to that productivity, policy that inhibits or promotes different kinds of aquaculture, and social preferences that determine aquaculture markets. Using a range of scenarios, we have shown that sustainable growth in aquaculture requires simultaneous consideration of all four boundaries and the potential interactions between all of these options. Our proposed conceptual framework shows that to further expand the boundaries of aquaculture production, the policy focus must remain flexible to enable the adaptation of from single-boundary approaches. Our approach takes account of the current boundaries, helping to consider the adaptive policy, which is deemed as a necessary tool for considering the dynamic interactions among boundaries, thus addressing the problem of defining the evolving limits of sustainable aquaculture

    Government review of the Mod-2 wind turbine (as-built)

    Get PDF
    The findings and recommendations of the Government committee formed to conduct an as-built review of the three Mod-2 wind turbine units at Goldendale, Washington are given. The purpose of the review was to identify any critical deficiencies in machine components that could result in failure, and to recommend any necessary corrective action before resuming safe machine operation. The review concluded that one of the deficiencies identified would preclude planned attended or unattended operation, provided that certain corrective actions were implemented

    Test Results from a High Power Linear Alternator Test Rig

    Get PDF
    Stirling cycle power conversion is an enabling technology that provides high thermodynamic efficiency but also presents unique challenges with regard to electrical power generation, management, and distribution. The High Power Linear Alternator Test Rig (HPLATR) located at the NASA Glenn Research Center (GRC) in Cleveland, OH is a demonstration test bed that simulates electrical power generation from a Stirling engine driven alternator. It implements the high power electronics necessary to provide a well regulated DC user load bus. These power electronics use a novel design solution that includes active rectification and power factor control, active ripple suppression, along with a unique building block approach that permits the use of high voltage or high current alternator designs. This presentation describes the HPLATR, the test program, and the operational results

    Determining and mapping species sensitivity to trawling impacts: the BEnthos Sensitivity Index to Trawling Operations (BESITO)

    Get PDF
    Applying an ecosystem approach requires a deep and holistic understanding of interactions between human activities and ecosystems. Bottom trawling is the most widespread physical human disturbance in the seabed and produces a wide range of direct and indirect impacts on benthic ecosystems. In this work, we develop a new index, the BEnthos Sensitivity Index to Trawling Operations (BESITO), using biological traits to classify species according to their sensitivity to bottom trawling. Seventy-nine different benthic taxa were classified according to their BESITO scores in three groups. The effect of trawling on the relative abundance of each group (measured as biomass proportion) was analysed using General Additive Models (GAMs) in a distribution model framework. The distribution of the relative biomass of each group was mapped and the impact of trawling was computed. Species with the lowest BESITO score (group I) showed a positive response to trawling disturbance (opportunistic response) whereas species with values higher than 2 (group III) showed a negative response (sensitive response). Species with a BESITO score of 2 did not show a significant response to the pressure (tolerant response). Trawling disturbance reduced relative biomass of sensitive species by 31% across the study area. This value increased to 46% when shelf-break was considered in isolation and reached values of 59.6% in the most impacted habitat (deep-sea muddy sands). The new index classified successfully the analysed species according to their sensitivity to trawling allowing modeling the impact of trawling disturbance on sensitive species, without the masking effect of opposed responses

    Ocean Acidification around the UK and Ireland

    Get PDF
    The average atmospheric carbon dioxide (CO2) concentration exceeded 414 parts per million (ppm) in 2021, a 49 % increase above pre-industrial levels, and increasing on average by 2.4 ppm per year over the past decade (Friedlingstein et al., 2022). This ongoing increase is primarily due to CO2 release by fossil fuel combustion, cement production and land-use change (mainly deforestation) (Friedlingstein et al., 2022; IPCC, 2021). Over a quarter of this annual anthropogenic CO2 emission dissolves into the Earth’s oceans each year (fossil fuel CO2 emissions = 9.5 ± 0.5 gigatonnes of carbon per year (Gt C yr-1, 1 Gt = one thousand million tonnes)), Land-use change emissions = 1.1 ± 0.7 Gt C yr-1, ocean uptake = 2.8 ± 0.4 Gt C yr-1; Friedlingstein et al., 2022). Once dissolved, the CO2 no longer influences the atmospheric heat budget, so this oceanic uptake mitigates human-driven warming and climate change. However, dissolved (or aqueous) CO2 undergoes a chemical reaction that releases hydrogen ions (H+), thereby decreasing the seawater’s pH (Figure 1). As pH declines, the carbonate ion concentration ([CO32−] also declines (Figure 1). The [CO32−] controls the saturation state (Ω) of calcium carbonate (CaCO3) minerals such as aragonite (ΩArag) and calcite (ΩCal), and indicates the ability of these minerals to precipitate (form) or dissolve. At Ω >1 water is supersaturated with Ca2+ and CO32− ions allowing CaCO3 minerals to form. When Ω <1, seawater is undersaturated with Ca2+ and CO32− ions and therefore any exposed CaCO3 minerals are prone to dissolution. These collective changes in marine carbonate chemistry are known as ‘ocean acidification’

    Carbon dioxide and ocean acidification observations in UK waters. Synthesis report with a focus on 2010–2015

    Get PDF
    Key messages: 1.1 The process of ocean acidification is now relatively well-documented at the global scale as a long-term trend in the open ocean. However, short-term and spatial variability can be high. 1.2 New datasets made available since Charting Progress 2 make it possible to greatly improve the characterisation of CO2 and ocean acidification in UK waters. 3.1 Recent UK cruise data contribute to large gaps in national and global datasets. 3.2 The new UK measurements confirm that pH is highly variable, therefore it is important to measure consistently to determine any long term trends. 3.3 Over the past 30 years, North Sea pH has decreased at 0.0035±0.0014 pH units per year. 3.4 Upper ocean pH values are highest in spring, lowest in autumn. These changes reflect the seasonal cycles in photosynthesis, respiration (decomposition) and water mixing. 3.5 Carbonate saturation states are minimal in the winter, and lower in 7 more northerly, colder waters. This temperature-dependence could have implications for future warming of the seas. 3.6 Over the annual cycle, North-west European seas are net sinks of CO2. However, during late summer to autumn months, some coastal waters may be significant sources. 3.7 In seasonally-stratified waters, sea-floor organisms naturally experience lower pH and saturation states; they may therefore be more vulnerable to threshold changes. 3.8 Large pH changes (0.5 - 1.0 units) can occur in the top 1 cm of sediment; however, such effects are not well-documented. 3.9 A coupled forecast model estimates the decrease in pH trend within the North Sea to be -0.0036±0.00034 pH units per year, under a high greenhouse gas emissions scenario (RCP 8.5). 3.10 Seasonal estimates from the forecast model demonstrate areas of the North Sea that are particularly vulnerable to aragonite undersaturation
    • …
    corecore