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Assessing andmanaging the cumulative impacts of human activities on the environment remains amajor challenge
to sustainable development. This challenge is highlighted by theworldwide expansion ofmarine renewable energy
developments (MREDs) in areas already subject to multiple activities and climate change. Cumulative effects as-
sessments in theory provide decisionmakers with adequate information about how the environment will respond
to the incremental effects of licensed activities and are a legal requirement in many nations. In practise, however,
such assessments are beset by uncertainties resulting in substantial delays during the licensing process that reduce
MRED investor confidence and limit progress towards meeting climate change targets. In light of these targets and
ambitions tomanage themarine environment sustainably, reducing the uncertainty surroundingMRED effects and
cumulative effects assessment are timely and vital. This review investigates the origins and evolution of cumulative
effects assessment to identifywhy themultitude of approaches andpertinent researchhave emerged, anddiscusses
key considerations and challenges relevant to assessing the cumulative effects ofMREDs and other activities on eco-
systems. The review recommends a shift away from the current reliance on disparate environmental impact assess-
ments and limited strategic environmental assessments, and a move towards establishing a common system of
coordinated data and research relative to ecologically meaningful areas, focussed on the needs of decision makers
tasked with protecting and conserving marine ecosystems and services.
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1. Introduction

The cumulative environmental effects (hereafter cumulative effects)
of marine renewable energy developments (MREDs) remain highly un-
certain (Bailey et al., 2014; Masden et al., 2015; MMO, 2013) and are
problematic in light of ambitious renewable energy targets and aspira-
tions to use the seas sustainably (Bergström et al., 2014; Copping
et al., 2014). MREDs, defined here as infrastructure developments that
generate electricity from wind, wave, tidal and current resources, add
to current pressures or introduce novel stressors that may positively
or negatively impact marine ecosystems (Gill, 2005; Linley et al.,
2009), thus appropriate assessments of the consequences of develop-
ment are warranted (Gill, 2005). Efforts to reduce uncertainties to ac-
ceptable levels are complicated first and foremost by the numerous
knowledge gaps about cause-effect relationships between effects and
ecosystem components (MMO, 2013; Lindeboom et al., 2015) but also
by the many interpretations of what cumulative effects and cumulative
effects assessment (CEA) are (Duinker et al., 2012). Revisiting the ori-
gins and evolution of CEA provides insight into the wide application of
the term observed today and the plurality of approaches applied.

The origins of CEA as a process are closely linked to the formation
and rise of environmental impact assessment (EIA). EIA was formalised
following the enactment of the National Environmental Policy Act of
1969 (NEPA) in the USA, established in the wake of popular concern
and political action linked to environmental degradation caused by
rapid industrial and agricultural progress in the 20th century (Glasson
et al., 2012; Du Pisani, 2006). EIA is premised on sustainable develop-
ment, sensu WCED (1987), being desirable, hence the consequences of
activities should be accounted for in decision-making before they hap-
pen (International Association of Impact Assessment (IAIA), 2009;
Glasson et al., 2012). In the late 1970s, it was realised that for EIA to fulfil
its potential, approvals for activities needed to consider other activities
in close spatial and temporal proximity (Canter and Ross, 2010). NEPA
was thus revised in 1978 to explicitly require the assessment of cumu-
lative effects and, over time (1995 in Canada and 1997 in the
European Union, for example), environmental legislation in numerous
regions of the world has followed suit (Canter and Ross, 2010;
Connelly, 2011).

The practise of CEAs received greater attention in the 1980s and
1990s, as litigation was successfully brought against environmental
agencies in theUSA deemed not to bemeeting their responsibility to as-
sess and manage cumulative effects (Canter and Ross, 2010; Schultz,
2012). Scientists working in different fields increasingly realised the
fundamental importance of managing cumulative environmental
change, leading to transboundary research initiatives resulting in im-
portant conceptual and methodological advances (Cocklin et al., 1992;
Beanlands and Duinker, 1984; Preston and Bedford, 1988). Ecological
principles began to play a role in EIA, for example the focus on a limited
set of valued ecosystem components, or receptors (Beanlands and
Duinker, 1984). While interpretation of the principle remains problem-
atic (see Ball et al., 2012), the focus on receptors that experience the ef-
fects of development over temporal and spatial scales greater than
those typically considered by EIAs for individual projects inevitably
led to a spotlight on cumulative effects (Duinker et al., 2012; Therivel
and Ross, 2007).

Increasing recognition by policy-makers of the role cumulative ef-
fects play in shapingmarine and terrestrial ecosystems can be observed
in the proliferation of legislation requiring regulators to consider cumu-
lative effects (Judd et al., 2015).While the language stipulating CEA and
the impetus behind the legislative drivers varies, the intent of the
drivers is consistent; to enable effective protection and management
of the environment (Judd et al., 2015). Similarly, growing awareness
of how an increasing range and intensity of anthropogenic stressors in-
fluences the condition and resilience of ecosystems has led to numerous
CEAs of one formor another driven by scientific inquiry. However, while
the range of drivers has increased, the bulk of information about the cu-
mulative effects of anthropogenic activities applied in environmental
planning and management continues to stem from one source, EIAs
completed for individual developments (Duinker et al., 2012; OSPAR
Commission, 2008). This is problematic, as EIA-led CEA has historically
been (e.g. Cooper and Canter, 1997; Cooper and Sheate, 2002) and con-
tinues to be highlighted as a weak link within the EIA process (Canter
and Ross, 2010; Wärnbäck and Hilding-Rydevik, 2009; Pope et al.,
2013), in large part due to the shortcomings of EIAs at identifying the
significance ofminor activities accumulating to impact valued receptors
and thewider environment (Therivel and Ross, 2007; Squires andDubé,
2013; Duinker andGreig, 2006). Cumulative effects, defined as effects of
an additive, interactive, synergistic or irregular nature that are caused
by individually minor but collectively significant activities, accumulate
over broad temporal and spatial scales (Harriman and Noble, 2008).

The term CEA (including cumulative impact assessments) has thus
become an umbrella term that today encompasses a plurality of inter-
pretations and approaches that seek to address a broadly similar prob-
lem, that of cumulative environmental change, sensu Spaling and Smit
(1993). In the marine environment, where the crux of management is
the protection of natural ecological characteristics while delivering



Table 1
example maritime activities with effects that may temporally and spatially coincide with
MRED effects, andwhich are also subject to uncertainties about the resultant environmen-
tal effects. Effect interactions between effects created by each activity may compound or
otherwise interact to result in cumulative effects.

Maritime activity Example uncertainties Example references

Oil & gas
exploration and
extraction

Effects of: seismic noise; habitat
change; oil pollution

(Barker and Jones, 2013;
Hauge et al., 2014)

Aggregate
extraction

Effects of: habitat loss; increased
sediment concentrations

(Foden et al., 2010;
Cooper et al., 2007)

Navigational
dredging

Effects of: habitat loss; increased
sediment concentrations

(Tecchio et al., 2016)

Commercial fishing Effects of: direct mortality;
trophic changes; habitat change

(Shannon et al., 2014;
Rice, 2008)

Artisanal and
recreational
activities

Effects of: direct mortality;
trophic changes; habitat change

(Hoover et al., 2013;
Riera et al., 2016)

Shipping Effects of: noise and vibration (Hawkins et al., 2014)
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services and benefits to society (Elliott, 2011), CEA, as a source of infor-
mation about the effects of multiple activities on the environment,
could provide strategic support to marine managers and planners
(Stelzenmüller et al., 2013). However, the present variability between
CEAs, whether conceptual or methodological, is problematic, as outputs
are frequently incomparable, preventing assessments of the cumulative
effects of, for example, MREDs, at scales appropriate to the identifica-
tion, mitigation and management of cumulative effects (Judd et al.,
2015).

The review was thus completed with the aims of establishing why
the variance of CEA approaches exist today, how this is problematic
for MRED development today, and how this is problematic in terms of
the broader global ambition to implement ecosystem approach man-
agement of marine waters. The review includes examination of the
key considerations of CEA and why these continue to pose a challenge
formarinemanagers and decision-makers given the current lack of con-
sistency between CEA methods. Finally, recommendations are put for-
ward, which seek to provide tangible considerations to enable
improved CEA, supported by the presentation of a conceptual structure
to coordinate CEA and pertinent research in a given area.

2. Cumulative environmental change and MREDs

Marine renewable energy developments have shone a spotlight on
CEA, as the number of applications for development licenses increase
while uncertainty about MRED cumulative effects remains (Masden
et al., 2015). In nations that subscribe to sustainable development prin-
ciples, the environmental effects of MREDs should be a decisive consid-
eration during the planning, licensing and decommissioning processes.
However the scale and pace of development and installation has
outpaced knowledge of MRED effects, particularly of cumulative effects
(MMO, 2013). In many jurisdictions, an expanding MRED industry also
overlaps in time with marine management ambitions that hinge on
managing cumulative effects to maintain ecosystem services and bene-
fits (Elliott, 2011; McLeod et al., 2005). Thus the impetus to reduce
greenhouse gas emissions from the energy generation sector using re-
newable energy resources (Gibon and Hertwich, 2014) is constrained
by the imperative to use coastal andmarinewaters sustainably. In coun-
tries where legally-binding targets for greenhouse gas emission reduc-
tions exist and overlap with viable energy resources, proponents of
MREDs are calling for accelerated development (e.g. in EU waters;
European Commission, 2014). However, the absence of consensus
about the nature of cumulative effects and the consequent uncertainty
about how to conduct CEA (see Duinker et al., 2012; Judd et al., 2015)
prevents thorough strategic planning and causes delays. In the UK, for
example, MRED development commenced prior to the government's
strategic environmental assessment (Glasson et al., 2012) and delays
during the consenting process of up to 42 months for individual
MREDs are reported (RenewableUK, 2013). As a result, project costs in-
crease, development timelines extend and investor confidence is im-
pacted (DECC, 2012).

In Europeanwaters, whereMRED implementation is well advanced,
research has focussed on identifying and quantifying effects of construc-
tion and operation on particular receptors (notably seabirds, marine
mammals and some fish species). Lindeboom et al. (2011) reported
on the short-term effects of an individual offshore wind farm noting
no significant direct impacts were identified relative to the studied re-
ceptors. Similarly for wave and tidal devices, no clear evidence for sig-
nificant impacts on fish and shellfish arising from individual devices
have been observed (Freeman et al., 2013). Studies frommonitoring off-
shore wind farms in Belgian (Degraer et al., 2013) and German (Federal
Maritime and Hydrographic Agency (BSH) and Federal Ministry for the
Environment, 2014) waters do not point to clear long-term significant
impacts to studied receptors, but as noted by Degraer et al. (2013),
assigning positive (e.g. fish aggregation) or negative values (e.g. colli-
sions with turbine blades) to observed effects requires local
observations to be put in context of receptor populations and the eco-
systemmore broadly. Thus significant cumulative effects and significant
environmental change cannot be ruled out. There are clear gaps in the
current understanding of how effects from multiple, large-scale devel-
opments will propagate over time and space through an ecosystem.
The ecological effects of MREDs, as opposed to the effects of individual
stressors on individual receptors, remain largely unexplored (Bailey
et al., 2014; MMO, 2013; OSPAR Commission, 2008; van der Molen
et al., 2014) and uncertainties remain high (Masden et al., 2015) . In
the EU EIA legislation requires developers to undertake CEA and for ma-
rine managers to make decisions cognisant of likely cumulative effects.
As with marine planning and licensing more broadly, Environmental
Statements coming from EIAs that accompany individual developments
are the principle sources of information about MRED cumulative effects
for regulators (OSPAR, 2008). However, confidence in the CEAs therein
is limited (Maclean, 2014), which in large part stems from the “EIA-
plus” (Therivel and Ross, 2007) approach applied, which are not well
suited to determining if effects arising from individual developments
are cumulatively significant (Harriman and Noble, 2008).

The challenge of assessing MRED cumulative effects is increased by
MREDs being constructed and operated within an evolving environ-
ment that hosts a dynamic range of users and activities. As a result of de-
cades or centuries of use,manymarine ecosystemswhereMREDs are or
are planned to be installed already show signs of degradation (Lotze and
Milewski, 2008; Halpern et al., 2008a, 2008b; Andersen et al., 2013). In
such areas, ecosystems are less resilient and more susceptible to incre-
mental increases in pressures (Crowder and Norse, 2008; Thrush and
Dayton, 2010; Thrush et al., 2008a, 2008b). Thus reducing the uncer-
tainty surrounding MRED cumulative effects also requires knowledge
gaps that relate to the effects of other marine activities to be addressed.
Knowledge gaps abound in relation to numerous maritime activities
(see Table 1), exacerbating the uncertainties surroundingMRED effects,
as effects frommultiple activities overlap and interact in time and space
to have a greater net effect on the environment or ecological compo-
nents (Duinker and Greig, 2006).

The introduction of additional and novel stressors into the environ-
ment byMREDs therefore presents a risk that significant environmental
change may occur that conflicts with objectives to protect and sustain-
ably manage the marine environment. Deciding how significant the
change is likely to be and thus whether the risk is acceptable requires
CEA to advance to enable the ecological effects of MREDs to be identi-
fied, quantified, and placed in context of other activities and the condi-
tion of the receiving environment. Recognising that MREDs present a
significant opportunity to deliver climate change mitigation plans
(Gibon and Hertwich, 2014), enhance national and regional energy se-
curity, and are touted as a source of economic growth (European Com-
mission, 2014), reducing the uncertainty surrounding MRED
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cumulative effects is timely and vital for climate change mitigation and
marine management ambitions.

3. Key considerations in cumulative effects assessment

The concept of cumulative environmental change addresses the
need to identify, mitigate and manage the effects of the continuum of
human activities on the health of the environment. Effects of these ac-
tivities accumulate over broad temporal and spatial scales to change
the environment (Cocklin et al., 1992; Contant and Wiggins, 1991;
Spaling and Smit, 1993). In context of MREDs, this requires decision-
makers to be aware of the effects of existing MREDs and the likely ef-
fects of planned MREDs, and to be aware of how those effects are likely
to interact with existing effects of other human activities happening in
the same environment, such as aggregate extraction, commercial and
recreational fishing, disposal at sea.

Cumulative effects assessments thus need to account for effects that
arise over time, over broad spatial scales, which originate frommultiple
sources andwhich interact. These attributes of cumulative environmen-
tal change are interrelated and collectively result in the cumulative
change observed in the environment (Spaling and Smit, 1993). Each of
these attributes or considerations are discussed further, as well as two
additional considerations (the focal point of a CEA and the contextwith-
in which a CEA is undertaken) to provide a frame of reference from
which to consider CEA as a tool to manage cumulative environmental
change.

3.1. Temporal accumulation

Time is one of the less examined attributes of cumulative environ-
mental change and is less considered in CEA in large part due to the
shortfall of historical data that can be correlated with spatial data
(Halpern and Fujita, 2013). Temporal accumulation refers to change
brought about by disturbances or perturbations accumulating as the pe-
riod between perturbations is shorter than the period of ecological re-
covery (Spaling and Smit, 1993). Typologies of cumulative effects have
been developed, including different means of temporal accumulation,
or time crowding and time lags (Cooper, 2004; Glasson et al., 2012),
however cumulative effect typologies are debated (see Cocklin et al.,
1992). Duinker and Greig (2006), who initially developed a classifica-
tion of cumulative effect types, subsequently argued that classifications
can distract from the critical point, which is to assess the net effect of
stressors on valued receptors. A key consideration is thus recognising
that effects can accumulate over time in a continuous, periodic, or irreg-
ular manner and occur over long or short time scales (Spaling and Smit,
1993).

The temporal accumulation of effects typicallymanifest as functional
effects, where processes (such as the flow of energy) or controlling
properties (for example, environmental carrying capacity) are altered
(Smit and Spaling, 1995). Fromamanagement perspective, CEAs should
thus be designed to inform an iterative process, which includes the flex-
ibility to account for incremental changes over time (Cooper, 2004), as
well as considering the relevant historical evidence to take account of
the relevant changes to support assessments (Bull et al., 2014; Squires
and Dubé, 2013). This latter point is crucial to avoid assessments failing
to account for “shifting baselines”(Elliott et al., 2015; Pauly, 1995),
where assessments of change are measured against a baseline which
is significantly different from the original state of the receptor
(Hobday, 2011).Where predictions about future effects due to develop-
ment are required, as withMREDs, scenarios should incorporate a suffi-
cient time horizon to account for forecast development and changes,
including climate change (Duinker and Greig, 2007; Cornwall and
Eddy, 2015). Efforts to address the potential cumulative effects of
MREDs in a given area should thus consider a sufficient historical per-
spective to determine trends in key receptors and stressors (e.g.
Andrews et al., 2014) and be forward looking to consider how predicted
effects will interact with forecast trends in environmental conditions
and stressors.
3.2. Spatial accumulation

Spatial accumulation, where the effects of perturbations overlap in
space (Spaling and Smit, 1993), can result in cumulative change, as
the space between perturbations is less than that required to disperse
the disturbance (Cooper, 2004; Spaling and Smit, 1993). Spatial accu-
mulation, aswith temporal accumulation, can occur over variable scales,
from local to regional to global (Spaling and Smit, 1993). Consideration
of spatial accumulation is more developed than temporal accumulation
enabled by information technology developments such as geographic
information systems (GIS) that can analyse and visualise georeferenced
datasets (Halpern and Fujita, 2013). Spatial effects typically manifest as
structural effects, such as fragmentation of habitats and population
shifts (Smit and Spaling, 1995). CEAmethodologies thus need to identi-
fy the appropriate scale to analyse and assess the spatial accumulation
of effects that may affect an ecosystem, which in this case may be also
influenced by the characteristics of the area, the resilience of the resi-
dent fauna and the intensity of activities undertaken in a given area
(Smit and Spaling, 1995). Hence addressing the potential cumulative ef-
fects of MREDs requires consideration of the extent of pressures arising
fromMREDs, existing and planned, cognisant of how the effects of indi-
vidual developments may accumulate to effect receptors within an eco-
logically connected area.
3.3. Endogenic and exogenic sources of pressure

Sources of effects contributing to cumulative environmental change
can be singular or multiple in origin (Cocklin et al., 1992), but in envi-
ronments where multiple activities occur, the state of the environment
reflects the effects of multiple pressures arising from multiple sources
(Duinker and Greig, 2006). CEAs variably assess similar or dissimilar
pressure types often chosen for inclusion depending on the driver of a
CEA, whether legal or scientific (Judd et al., 2015). CEA addressing cu-
mulative environmental change requires consideration of the effects
of multiple sources of perturbations, as the ambition is to understand
how environmental condition has been and is likely to be affected by
human activities (Cocklin et al., 1992; Squires and Dubé, 2013).

There are two categories of pressures that contribute to change in
the systembeing studied: endogenic and exogenic (Elliott, 2011). Endo-
genic pressures are those that are created within the system that can be
managed; exogenic pressures, such as climate change, are those that
emanate from outside the system or operate at scales beyond the sys-
tem (Elliott, 2011). The effects of climate change are already being felt
in coastal environments and changes to date are a fraction of the change
predicted, as the seas and oceans respond to physically-driven and
chemically-driven changes (Cox et al., 2000; Harley et al., 2006). Cli-
mate change adds complexity to the understanding of anthropogenic
cumulative effects by introducing stressors that interactwith endogenic
pressures (Harley et al., 2006) and which challenges CEA, as it operates
at a global scale and is subject to uncertainty (EEA, 2015). However,
CEAs of MREDswould be incomplete without consideration of potential
climate change effects given the time scale of MRED lifecycles (MMO,
2013).

Assessing howMREDs, as individual and/or multiple developments,
will affect the environment therefore requires an assessment of MRED
stressors both existing and forecast, placed into context of an analysis
of the condition of the environment receiving the stressors (the base-
line) and analyses of how the environment responds to effects (Dubé,
2003; Duinker et al., 2012; Judd et al., 2015; Marcotte et al., 2015).
This is challenging as clear knowledge gaps remain for MREDs in their
own right and for MREDs together with other activities.
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3.4. Ecological connectivity

The connectivity between elements of the biophysical world (and of
society to ecosystems) introduces further interdependencies that influ-
ence cumulative environmental change (Spaling and Smit, 1993). Thus
while the concept of CEA is intuitive, the practicalities of assessment are
complicated by a complex reality of interactions between causations,
processes and organism populations, and of human activities, past and
present, combining to simultaneously affect numerous areas within an
area of study (Bedford and Preston, 1988). Thus assessments of the sig-
nificance to the environment of changes that result from current or pro-
posed activities, which typically consider unlinked components in the
environment, should be viewed as pieces of an incomplete puzzle.

The connectivity between ecosystem components leads to the po-
tential for indirect effects of stressors to arise, such as food web effects
caused by changes in prey abundance (e.g. Perrow et al., 2011). CEA
therefore requires a broader perspective to be applied that takes into ac-
count the connections and effects on biodiversity and ecological func-
tions in a given area (Thrush and Dayton, 2010; Strong et al., 2015).
As marine management objectives expand to a more holistic perspec-
tive, assessing how activities and stressors influence ecosystem func-
tions, rather than individual species, may provide a more efficient
means of monitoring ecosystem health (Strong et al., 2015). For exam-
ple, in seafloor systems, marine benthic organisms perform essential
functions, helping those particular systems to deliver many goods and
services. Ecological functions can be manifold, some examples are hab-
itat provision, secondary production, sediment reworking via bioturba-
tion. Recently, at the EU level under the Marine Strategy Framework
Directive there is a pressing need to ascertain seabed and ecosystem
functions (Birchenough et al., 2012; Birchenough et al., 2013) to support
sustainable use andmanagement of marine resources. The effects of in-
dividual functions combined with the rate of functioning governed by
relationships between abiotic and biotic factors are key parameters to
understand the way seafloor systems operate (Reiss et al., 2009).
3.5. Placing receptors at the centre of assessments

A key criticism of EIA-led CEA is the stressor-led approach,which as-
sesses how single stressors arising from a proposed development to-
gether with the same stressor arising from proximal developments or
activities impact a valued receptor (Squires and Dubé, 2013; Dubé
et al., 2013; Duinker et al., 2012). Recognising that receptors experience
multiple stressors and accumulate effects over broad temporal and spa-
tial scales, EIAs thus struggle to assess how receptors respond to cumu-
lative effects (Therivel and Ross, 2007; Duinker et al., 2012). To appraise
how additional or novel stressors from one or many activities will im-
pact a receptor requires sufficiently broad horizons that include consid-
eration of the array of stresses that human activities impose on the
receptor (Duinker and Greig, 2006; Duinker et al., 2012). Receptors,
rather than stressors, therefore, should be the focal point of CEA and
guide the identification of the various stressors to include in an assess-
ment of how an activity or activities will impact receptors. The use of
the term “impact” also brings into play the distinction between “effects”
and “impacts” of stressors. To determine whether a stressor effect is of
sufficientmagnitude and intensity to have ameaningful impact on a re-
ceptor, for example a significant decline in population, typically requires
additional information or research, however many studies use the term
impact based on findings that suggest an effect (Boehlert and Gill,
2010).MRED CEA studies typically assess receptor responses to individ-
ual stressors, such as habitat loss, generated by a limited number of ac-
tivities, such as offshorewind farm construction and aggregate dredging
(e.g. SmartWind, 2015). The results contained in such CEAs are present-
ed as determinations of impact significance, however to determine the
cumulative effect of a stressor on a receptor requires consideration of
the range of stressors acting on the receptor (Duinker and Greig,
2006), i.e. effects, not impacts, sensu Boehlert and Gill (2010) have
been assessed.

CEAmethodologies that consider the traits and sensitivities of recep-
tors to guide the design of an assessment are better able to identify and
predict multiple stressor effects (Segner et al., 2014; Teichert et al.,
2016). Receptor-led approaches also support improved consistency be-
tween CEAs by enabling unifyingmetrics to be identified that can be ap-
plied to a receptor or function (Segner et al., 2014). Assessments that
have placed receptors at the centre of MRED CEA have been instructive
in identifying the potential risks of widespreadMRED deployments rel-
ative towide-rangingmobile receptors (e.g. underwater noise effects on
marine mammals; Heinis and de Jong, 2015; collision risks for seabirds
and bats; Leopold et al., 2014). Such CEAs also enable investigation into
one of the longstanding uncertainties surrounding CEA, that of appro-
priate temporal and spatial boundaries. CEAs that centre on the receptor
imply boundaries being applied based on temporal and spatial charac-
teristics of receptors (Therivel and Ross, 2007; Segner et al., 2014).

3.6. Purpose and context

The final consideration discussed here is the purpose of a CEA and
the context that shapes the design of a CEA. Why a CEA is undertaken
influences the approach taken, the receptors included and thus the out-
put, poorly-defined and overly generic assessments lead to variability
and uncertainty that is problematic for marinemanagers. While drivers
behind marine CEA are varied (see Judd et al., 2015), the movement
away from sectoral management to ecosystem approach management
suggests that variability in a planning and management context could
decrease if CEAs converge on a common position about the aim and out-
put of CEAs regardless of activity.

The ecosystem approach to management has emerged as a tenet
around which marine management is centred (Elliott, 2011; Long
et al., 2015;McLeod et al., 2005), recognising that the combined sources
of pressures, rather than isolated sectors, require management if sus-
tainable use of the seas is to be achieved (Curtin et al., 2015; Borja
et al., 2013; Elliott, 2011). In Europe, the obligation of EUMember States
to achieve Good Environmental Status (see Borja et al., 2013) formarine
waters by 2020 has led to regional assessments of the state of the envi-
ronment (e.g. HMGovernment, 2014) and themapping and assessment
of the effects ofmultiple humanpressures on environmental status (e.g.
Andersen et al., 2013). Regional studies provide context for CEAs relat-
ing to discrete activities, and could form thebasis for a commonbaseline
to support future CEAs. Many of the uncertainties that apply to CEA
broadly also apply to regional CEA, for example cause-effect knowledge
gaps, data paucity and a lack of assessment tools (Foden et al., 2011a,
2011b). Further, the conceptual issues about what cumulative effects
are and how to assess them remain pertinent for regional CEA also. A
critical point is while policy-makers, marine managers and researchers
have converged on cumulative effects as a key issue to resolve, the var-
ied aims, contexts and expectations of CEAs leads to outputs that are not
necessarily fit for purpose for marine management ambitions (Judd
et al., 2015).

4. Key challenges to improving cumulative effects assessment

For CEA to evolve into a consistent, appropriate decision-making
tool, a series of challenges remain that require resolution. Key to ad-
vancing CEA are: coordinating the multitude of approaches to CEA to
enable currently disparate methodologies to contribute to improving
regional understandings of cumulative environmental change; over-
coming the dominance of EIA-led CEA in the planning and licensing sys-
tems; enabling CEA to provide ecosystem-relevant information; and
applying CEA within the context of an appropriate baseline. To meet
these challenges requires common ground to be established within a
defined area by provision of an overarching frame of reference. These
challenges are expanded on in the following sections.
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4.1. Convergent thinking, divergent approaches

From predictive, EIA-based origins, CEA today includes retrospec-
tive, pressure-based approaches (e.g. Halpern et al., 2008a, 2008b), pre-
dictive, stressor-based approaches (e.g. standard EIAs), and frameworks
seeking to integrate both predictive and retrospective approaches
(Dubé et al., 2013). The focus of CEAs ranges from individual species
(e.g. caribou, Johnson et al., 2015; harbour porpoises, Heinis and de
Jong, 2015), to habitats (e.g. seagrass, Grech et al., 2011; fish habitat in
estuaries, Teichert et al., 2016), to ecosystem functions and services
(e.g. biodiversity; Andersen et al., 2015). The scale of CEAs varies corre-
spondingly, from boundaries defined by the extent of stressors arising
from a single development, by species distribution (e.g. seabirds and
bats, Leopold et al., 2014), to ecologically meaningful areas (e.g. water-
sheds, Squires and Dubé, 2013; the Baltic, Korpinen et al., 2012), in-
creasing to global marine areas (e.g. Halpern et al., 2008a, 2008b).

The emergence of regional CEAs owes much to the conceptual and
practical advances associated with improving the management of wet-
lands (e.g. Preston and Bedford, 1988) and watersheds (e.g. Dubé,
2003). Recognising that EIA and project-driven CEA could not match
the spatio-temporal dynamics of valued receptors or the broader envi-
ronment (Preston and Bedford, 1988; Squires and Dubé, 2013), CEA re-
searchers assessed increased spatial scales to consider the effects of
multiple stressors acting within ecologically meaningful areas. In the
marine environment, a clear example of expanded boundaries stems
from the North Sea, where improved CEA tools were developed in re-
sponse to ongoing and expanding industrial activities. Regional bound-
aries have been applied in response to legislative drivers to assess
human pressures in the marine environment (e.g. Andersen et al.,
2013). The expansion of MREDs in the North Sea has driven CEA for-
ward, with cumulative effects of MREDs stressors coming under scruti-
ny (e.g. Bailey et al., 2014; MMO, 2013; Pine et al., 2014; Wright and
Kyhn, 2015). CEAs for MREDs that apply broader spatial scales include
those completed under FAECE (Framework for Assessing Ecological
and Cumulative Effects of offshore wind farms), a structuredmethodol-
ogy developed for the Netherlands government, that distinguishes be-
tween a legal and ecological approach, recognising that legally
compliant CEA may not be ecologically relevant (Ministry of Economic
Affairs, 2015). The framework has been applied regionally, investigating
cumulative disturbance to marine mammals caused by impulsive un-
derwater noise (Heinis and de Jong, 2015) and the cumulative effect
of collision and habitat loss on seabirds and bats (Leopold et al., 2014).
As with many marine CEAs, the paucity of data and uncertainties
about cause-effect relationships require assumptions to be made that
limit the confidence in the outputs (Heinis and de Jong, 2015; Leopold
et al., 2014). However, the application of novel methodologies that de-
fine the spatial boundaries based on the receptor, andwhich determine
significance in context of the receptor population are important ad-
vances for marine CEA.

While data paucity is problematic, regional CEAs are developing rap-
idly building on advances in understanding stressor-receptor relation-
ships (e.g. stressors affecting fish in estuarine waters; Teichert et al.,
2016), receptor traits (e.g. spatial behaviours of seabirds relative to off-
shore wind farms; Bradbury et al., 2014); mapping (e.g. iterating a CEA
using novel temporal data; Clarke Murray et al., 2015a, 2015b), and ap-
plying novel conceptual frameworks (e.g. Vries et al., 2012). Literature
points to the development of CEAs, particularly CEAs completed for
MREDs, advancing via progress grounded in academic research, rather
than advances driven by the EIA process. For example, elucidating the
cumulative effect of collisions of seabirds with offshore turbine blades
has progressed by applying advances in distribution modelling (e.g.
Miller et al., 2013) and species sensitivity modelling (e.g. Bradbury
et al., 2014). Such advances have in turn enabled CEAs at scales appro-
priate to receptors.

A similar process of iterative CEA development can be observedwith
the application and refinement of the spatial analysis methodology
published by Halpern et al. (2008a, 2008b). The mapping approach de-
veloped by Halpern et al. (2008a, 2008b) has been instrumental in
progressing marine CEA by building on advances in geospatial analysis
techniques to match broad-scale habitats with anthropogenic activities
and using expert judgement to estimate the sensitivity of, and thus im-
pact to, the habitats. Adaptations of the approach have been applied to
regional waters (e.g. Canada's Pacific coast; Ban et al., 2010; Mediterra-
nean Sea and Black Sea; Micheli et al., 2013), to include indirect pres-
sures as well as direct anthropogenic pressures (e.g. climate change
and industrial development; Clarke Murray et al., 2015a, 2015b), and
to enable effects of anthropogenic activities on specific ecosystem com-
ponents to be assessed (e.g. on marine predators; Maxwell et al., 2013).
Further refinement is required to adapt advanced spatial analyses to
meet the needs of marine managers, by providing information at a
scale appropriate for management interventions, validating predicted
stressor intensities and by combining spatial analyses with suitable
temporal information to provide indications of environmental change
(Halpern and Fujita, 2013; Judd et al., 2015).

Conceptual frameworks, such as the driver-pressure-state-impact-
response (DPSIR) framework (e.g. (Elliott, 2002), have been influential
in bringing systems thinking to understanding relationships between
drivers and effects (Atkins et al., 2011) and the DPSIR approach has
been recommended for marine CEA (MMO, 2013; Kelly et al., 2014).
DPSIR continues to develop with the integration of human welfare as
a link in the framework (DSPWR; Cooper, 2013) and to identify activi-
ties resulting in pressures (Driver-Activities-Pressures-State-Impact-
(Welfare)-Response; DAPSI(W)R; Elliott, 2014). Reflecting the connec-
tivity between natural systems, effects and responses, the DPSIR ap-
proach has further developed to account for interactions between
linkages, a networked approach, to support prioritisation of marine
management interventions (Knights et al., 2013). A variation on the
driver-effect framework, CUMULEO (Cumulative Effects of Offshore ac-
tivities) has been developed and proposed as a “conceptual umbrella”
(Tamis et al., 2015) to bring direction to the various forms of environ-
mental assessment, working from the strategic level down to project
level (Tamis et al., 2015). Network thinking is applied to map the rela-
tionships between multiple activities developed by Knights et al.
(2013) to address the assumed independence between linkages that
limits standard DPSIR approaches (Gregory et al., 2013; Knights et al.,
2013). A variation of CUMULEO, CUMULEO-RAM, has been tested in
Dutch coastal waters, translating spatial information about activities
and stressors into indicators of ecological significance (Vries et al.,
2012). As well as considering relationships between activities, the
model output includes estimates of the contribution of each activity to
effects on receptor survival and reproduction, an important step for-
ward for CEA in context of marine management.

4.2. A call for multidisciplinary action

The ubiquity of cumulative effects in the environment and the im-
pact cumulative effects have on the quality and health of the environ-
ment (Duinker and Greig, 2006) result in many lines of research being
relevant to CEA. For CEA to advance beyond isolated perspectives to-
wards the broader perspective required to identify, assess and manage
cumulative environmental change requires multidisciplinary thinking.
Multiple stressor analyses and ecological modelling, which seek to elu-
cidate cause and effect relationships in complex networks are increas-
ingly relevant to CEA. Multiple stressor analyses seeking to identify
and rank stressors to enable targeted management interventions (e.g.
conservation of seagrasses, Giakoumi et al., 2015; quality of fish habitat
within estuaries, Teichert et al., 2016) hold promise to enable more ef-
fective CEAs by providing structured methodologies around which key
stressors can be identified relative to the resource in question.

Marine ecosystem models assist with analysing and testing the dy-
namics of foodwebs within marine ecosystems and provide a means
of estimating how ecosystems respond to stressors (Steenbeek et al.,
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2013). As such, the models hold promise to support CEA by enabling
stressor effects to be modelled at ecologically meaningful scales and
by supporting the establishment of a baseline by assessing ecosystem
status (Piroddi et al., 2015). Ecopath with Ecosim (Christensen et al.,
2005) is a widely used modelling approach that is evolving to enable
the integration of spatial and temporal dynamics within ecosystem
models (Coll et al., 2015; Steenbeek et al., 2013). Physical models have
also been applied to test the effects of physical disturbance due to
MREDs on ecosystems (van der Molen et al., 2014). Modelling effects
is an attractive option, as empirical studies at sea tend to be prohibitive-
ly expensive (Alexander et al., 2016), but despite the mathematical
complexity, models are simplified simulations of the real world and
are based on assumptions, thus validation ofmodels is critical to test, re-
fine and improve modelling tools (Forrest et al., 2015). Again, as with
CEA more broadly, the paucity of data, issues of scale and data resolu-
tion, and the knowledge gaps about cause-effect relationships pose
challenges for model development and validation (Alexander et al.,
2016).

In the context of identifying andmanaging sources of cumulative en-
vironmental change, the different approaches vary in terms of the re-
ceptors considered, methodologies applied and stressors assessed.
Additionally significance, specifically the likelihood of an effect occur-
ring that has a significant impact on a valued receptor (see Boehlert
and Gill, 2010) is variably interpreted (Ehrlich and Ross, 2015). The out-
puts of the approaches also differ, from spatial outputs, to diagrammatic
outputs highlighting key stressors, to networks of linked drivers and
ecosystem components. Thuswhilemany research streams are relevant
to managing cumulative environmental change and to CEA, a key chal-
lenge is to enable the outputs of relevant research streams to converge
on resolving a commonly understood problem, and to encourage inter-
disciplinary and cross-border research.

4.3. The dominance of EIA constrained cumulative effects assessments

EIA-constrained CEA continues to dominate decision-making sup-
port in practise (Duinker et al., 2012) despite EIA approaches struggling
to deliver meaningful CEA (Gunn and Noble, 2011; Squires and Dubé,
2013; Therivel and Ross, 2007). While EIA grapples with meeting ex-
panded expectations around CEA, EIAs have become increasingly
resource-heavy and burdensome (Smart et al., 2014; Wright, 2014)
while failing to meet the evolving information needs of regulators and
decision-makers tasked with protecting and maintaining the overall
condition of the environment (Hegmann and Yarranton, 2011; Judd
et al., 2015). The continued focus of EIAs on regulatory compliance
(Ball et al., 2012) rather than CEA advancement suggests that EIA-led
CEA alone, unless fundamentally changed, is unlikely to resolve the “co-
nundrumof cumulative effects assessment” (Judd et al., 2015).Whether
individual developments can reasonably be expected to assess effects at
the spatio-temporal scales that apply to receptors, which may include
migratory species, watersheds or ecosystems, is moot (Freeman et al.,
2013), and it has been argued that responsibility for CEA should be
borne by governments (e.g. Duinker and Greig, 2006). A counterpoint
to this argument is the strength of decision-making processes associat-
ed with EIA and the widespread acceptance of EIA as a process to sup-
port sustainable development (Glasson et al., 2012). Noting that the
arguments against standard EIA approaches (Glasson et al., 2012) as a
means of addressing cumulative environmental change are well
established and have been tested (e.g. EIAs not identifying incremental
declines in habitat connectivity for woodland caribou, Johnson et al.,
2015; EIAs not identifying the incremental loss of habitat for burrowing
birds, Heneberg, 2013), calls for a rethink of the relationship between
EIA and CEA (Greig and Duinker, 2014) remain pertinent.

Numerous authors have pointed to the need for cross-border region-
al or strategic approaches to CEA (e.g. Duinker et al., 2012; Duinker and
Greig, 2006; MacDonald, 2000; Gunn and Noble, 2011) and generic
frameworks to coordinate tiered environment assessments have
recently been proposed (e.g. CUMULEO; Tamis et al., 2015). While the
rationale for strategic approaches to proceed project-level assessments
is intuitive and well founded (Lobos and Partidario, 2014; Tetlow and
Hanusch, 2012), the reality in many areas, for example United
Kingdomwaters of the North Sea, is that project-level assessments pre-
cede strategic assessment (Glasson et al., 2012). Further limitations of
relying on strategic environmental assessments to resolve the EIA-
cumulative effect conundrum are that strategic environmental assess-
ments tend to apply standard EIA approaches to impact assessment
(Lobos and Partidario, 2014) anddecision-making structures are less ro-
bust than EIA processes (Gunn and Noble, 2011). Arguably, in the con-
text of CEA and cumulative environmental change, the conceptual
questions (e.g. what stressors and receptors should be included, what
time and spatial scales for assessment are appropriate, how to consider
exogenic pressures) and practical questions (e.g. how do receptors re-
spond to multiple stressors; how do changes propagate through the
ecosystem) pose greater obstacles to strategic environmental assess-
ments overcoming the CEA conundrum. Enabling the regional ap-
proaches to CEA will thus require cross-border, multidisciplinary
approaches that combine to reduce uncertainty and illuminate where
priority effects are impacting the status of the environment.

An alternative to stressor-based assessments are the effects-based
assessments that put the environment as the focal point of the assess-
ment, and seek to measure changes in indicators relative to a reference
condition (Dubé et al., 2013). The priority of effects-based assessment is
the monitoring and measurement of ecological change (Dubé et al.,
2013), which has implications for managers and planners who also re-
quire knowledge about the causes, as well as consequences of effects,
and support to manage and mitigate future effects (Judd et al., 2015).
Thus while there are limitations to stressor-based, predictive methods,
such approaches in combination with effects-based, retrospective CEA
hold greater promise of enabling sustainable development than one ap-
proach in isolation (Dubé, 2003; Dubé et al., 2013). Coordination of pro-
ject and regional CEA also offers the potential to combine strengths of
each approach (Fig. 1). In countries where development and activities
are required to submit EIAs in support of a development application,
the frequency of assessments offers inputs of data obtained during char-
acterisation andmonitoring studies that could improve the resolution of
regional baselines. Furthermore, regional CEAs that apply meaningful
spatial boundaries relative to cumulative environmental change could
inform the determination of appropriate spatial boundaries for project
CEAs.

4.4. Adapting CEA to support ecosystem assessments

Realising the potential of CEA to support holistic marine manage-
ment requires CEA to provide information about the effects, current
and forecast, of human activities on an ecosystem. This is challenging
due to the natural variability of ecosystems and the many knowledge
gaps that exist about ecosystem structure and functioning (Thrush
and Dayton, 2010). The potential for interactions between effects,
which may result in non-linear responses (Crain et al., 2008; Piggott
et al., 2015) and between nested ecosystem components (Malone
et al., 2014) have led CEA to be labelled an intractable problem
(Stakhiv, 1988). The nature of the marine environment exacerbates
the CEA challenge as the three-dimensional scale from seabed to sur-
face, the connectivity between areas linked by vast dispersal distances
of eggs and larvae (Crowder and Norse, 2008; Carr et al., 2003) com-
bined with the difficulties of visual observation make marine research
expensive and logistically challenging (Parsons et al., 2014).

The difficulties observing marine processes and responses to
stressors mean that empirical observations, particularly sustained ob-
servations of the dynamics of marine systems, are often lacking
(Malone et al., 2014). In the context of CEA, while advances in spatial
analyses improve predictions about where cumulative effects concen-
trate (e.g. Halpern et al., 2008a, 2008b) and progresses in



Fig. 1. comparison between characteristics of typical project-driven CEA and regional CEA. The direction of the arrow indicates increasing strength of the characteristic relative to the need
to identify andmanage cumulative environmental change. Benefits of project CEA relative to regional CEA include the higher resolution of data, the strength of decision-making associated
with project assessments, and the frequency of assessments completed. Regional CEA, by contrast, tends to apply more appropriate boundaries (notably spatial) to assess cumulative
effects and the results of which support ecosystem approach management. Coordinating these scales of assessment to resolve a common problem would lead to more efficient
progress towards developing a CEA system capable of supporting marine management ambitions.
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environmental modelling to predict the significance of cumulative ef-
fects (e.g. van der Molen et al., 2014), verification remains difficult
due to the paucity of appropriate data (Halpern and Fujita, 2013). To
this end, the diverse research streams investigating, for example,
cause-effect relationships and multiple stressor interactions, aid im-
proved CEA by providing data and insights into how cumulative effects
arise and interact. Equally, published results of monitoring programmes
that observe the environmental effects of, for example MREDs (e.g.
Degraer et al., 2013; Federal Maritime and Hydrographic Agency
(BSH) and Federal Ministry for the Environment, 2014) provide impor-
tant data that could verify predicted effects and which could enable
local observations to be scaled to predict ecosystem-level effects. Critical
to advancing CEA will be integrating scientific advances from research
into multiple stressor interactions (e.g. Teichert et al., 2016; Tran et al.,
2009; Jackson et al., 2015), systematic approaches to mapping cause-
effect relationships (e.g. Gregory et al., 2013; Knights et al., 2013) and
ecological studies illuminating the sensitivities of species and ecosys-
tems (e.g. Nimmo et al., 2015; Thrush et al., 2008a). Providing CEA prac-
titioners with access to fit for purpose information and appropriate CEA
tools that enable disparate datasets to be combined will be a key devel-
opment to advance CEA in a given region.

4.5. Establishing a baseline

For CEA to support environmental management in an area with on-
going and forecast activities, it is necessary to establish a fixed baseline
against which to evaluate predicted effects (Bull et al., 2014). Establish-
ing a baseline for CEAs is contentious, as approaches alternatively rec-
ommend a baseline developed from historical conditions (e.g. Squires
and Dubé, 2013) or working from the present condition (e.g. Vries
et al., 2012). EIAs for MREDs veer towards the latter by including
existing pressures within the baseline, i.e. assuming that the current
condition of VECs or the environment is normal. However this shifting
baseline approach risks accommodating and masking environmental
change (Pauly, 1995) potentially presenting marine managers with a
Sisyphean task as reference points continually change (Gatti et al.,
2015).

Marine systems tend to experience a wide range of perturbations,
which can result in a series of succession patterns. Depending on the
level of the perturbation, some systems may often return to a pre-
impacted state or in some cases experience further levels of distur-
bances (Birchenough and Frid, 2009). The perturbed nature ofmostma-
rine ecosystems suggests that an “original” state is unlikely to be
recovered, particularly in light of climate change (Hobday, 2011). Thus
determining an appropriate baseline is difficult, particularly as the con-
cept of an equilibrium state is entrenched in ecological thinking
(Hobday, 2011). The challenge of defining a baseline also hinders the es-
tablishment of thresholds, which arewidely considered to be essential if
the significance of effects are to be quantified relative to a receptor
(Duinker et al., 2012; Seitz et al., 2011; Westbrook and Noble, 2013).
The requirement to refer to thresholds is presently problematic, as
more often than not, thresholds are unknown and determining defensi-
ble thresholds based on empirical evidence is scientifically and socially
challenging (Duinker and Greig, 2006; Foley et al., 2015; Groffman
et al., 2006). As with CEA, the application of the concept of thresholds
is open to interpretation, which, exacerbated by questions about scale,
natural variability and nonlinear system responses, can reduce confi-
dence in defined thresholds (Groffman et al., 2006). Finally thresholds
can vary between jurisdictions, hindering regional assessments for re-
ceptors that range beyond national boundaries, for example sound ex-
posure thresholds for marine mammals in European waters (Luedeke,
2012). Thus as maritime activities continue to expand, pragmatic alter-
natives are necessary to support management where thresholds are ab-
sent.Where thresholds are absent, the determination of trends based on
the integration of historical data, where available, provides an opportu-
nity to guidemanagement decisions (Mcclenachan et al., 2012). The use
of trends can identify the extent towhich a population has changed over
time and thus provides insights into whether or not a receptor is likely
to be resilient to or particularly sensitive to additional stress
(Mcclenachan et al., 2012), which may provide much needed insight
into the significance of effects.

The use of different baselines between assessments brings into focus
determinations of significance. EIA is concerned with identifying signif-
icant environmental impacts (Beanlands and Duinker, 1984; Glasson
et al., 2012), but significance is a difficult term to pin down, as it is rela-
tivistic and can relate to statistical, ecological, social or project signifi-
cance (Beanlands and Duinker, 1984). Without shared temporal and
spatial points of reference between assessments, the context within
which determinations of significance are made may vary, including
temporal and spatial scales, interpretations of value, ecological sensitiv-
ity and so on (Wood, 2008). For CEA, which requires that the effects of
different activities and stressors on receptors can be compared, such
variation is problematic.

As with temporal scale, the spatial scale applied to assessments can
influence the determination of significance. The spatial scale applied
and how variabilitywithin time and space is dealt with have fundamen-
tal bearings on how likely it is that an effect will be detected (Hewitt
et al., 2001). What appears significant at a local level may appear insig-
nificant in a regional context, for example. Spatial scale, in comparison
with the temporal component of CEA, is easier to conceptualise and in-
tegrate into an assessment, in large part due to advances in geographic
information systems (GIS). Temporal scale is difficult to integrate into
assessments (Halpern and Fujita, 2013), although recent evaluative
CEAs have investigated temporal change in pressures in an area com-
pared with previous iterations (Halpern et al., 2015; Clarke Murray
et al., 2015a, 2015b).
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A challenge for CEA in a given area is thus to put an appropriate
frame of reference in place, including a temporal line in the sand
from which future CEAs can use to determine the significance of
changes to valued receptors, and which can be used to measure
changes caused by permitted but not yet constructed developments.
A challenge is identifying suitable receptors relative to CEA for which
historical data exists that enables trends to be determined and
against which counterfactual scenarios (without development)
could be modelled (Bull et al., 2015).

4.6. Establishing common ground

A universal definition for cumulative effects and of CEA seems un-
likely given the variety of drivers behind CEA research and the lack of
consensus about the nature of cumulative effects (Duinker et al.,
2012).While the lack of consensus leads to variability that impedes res-
olution of one interpretation of the problem, arguably the flexibility is
positive as different CEAs seek to address discrete and perhaps more
tractable parts of the problem, and provide insights into interactions be-
tween elements of the ecosystem. Thus the range and breadth of CEAs
may lead to a more rapid resolution of the CEA problem. Every CEA,
however, should be accompanied by a clear statement of the objective,
scope and boundaries of the assessment (Duinker et al., 2012; Cooper,
2004; Judd et al., 2015), and each assessment should be guided by a
specified definition of cumulative effects appropriate for the task in
hand (Duinker et al., 2012; Judd et al., 2015), hence the importance of
CEA principles being elaborated relative to marine management (see
Judd et al., 2015).

Fromamarinemanagement perspective, variability betweenCEAs is
problematic (Ball et al., 2012; Judd et al., 2015). Thus while the breadth
of CEAs undertaken in an area could present an advantage, it is appro-
priate that common ground is established fromwhich to guide CEAs rel-
ative to the licensing and management of marine activities. This would
require a common position to be agreed about the objective and outputs
of CEAs completed for proposed activities, such as MREDs, in a given
area. This common ground would need to apply to all activities within
a given area. Ultimately improvements in environmental condition
will require integrated management of the variety of effects generated
by the multitude of users (Elliott, 2013), thus marine managers require
compatible information from CEAs regardless of the activity or pres-
sures considered.

For regional management to benefit from CEA requires managers to
have access to information from assessments designed to identify and
assess effects accumulating or otherwise interacting over different tem-
poral and spatial scales, and generated by multiple activities. As sug-
gested in this paper, the plurality of methodologies and different
assessment scales could be interpreted as a strength. We suggest that
CEA is thus coordinated within a meaningful area in terms of purpose
and outputs. Coordinating CEA by defining what CEA is for relative to
a region that is meaningful, ideally in an ecological rather than jurisdic-
tional way, provides an opportunity to harness the multitude of assess-
ments and pertinent research (Fig. 2).

Fig. 2 illustrates a representation of a nested system to provide a
structure from which to coordinate CEAs conducted within an ecologi-
cally meaningful area by enabling the flow of information to and from
decision-makers, EIA practitioners and CEA researchers regardless of
the scale at which individual CEAs are conducted. The regional CEA da-
tabase informs marine management, including licensing marine activi-
ties, which is nested within the regional management system. EIA-led
CEA becomes CEA-led EIA and significance determinations are informed
with reference to the regional CEA database. The information flow be-
tween research and databases is an iterative process that can allow
CEA to improve over time by directing research to address priority
knowledge gaps and by taking into account new knowledge, helping
to improve the regional database. Existing activitieswould then be inte-
grated into the baseline, but effects and trends accounted for to avoid
shifting baselines. When an application for a license permitting a devel-
opment or activity is entered into themarine licensing system (the pro-
cess stream on the left hand side of Fig. 2), the CEA process, from
stressor generation study through to the determination of significance,
is guided by the regional CEA database to enable comparable CEAs
that contribute to the regional picture.

The representation in Fig. 2 is designed to coordinate CEAs at region-
al and project level to reduce the incongruity between CEAs completed
at different scales and for different activities. The nested system also re-
defines the roles of CEA and EIA, becoming CEA-led EIA that feed into
the regional system designed to support themarinemanagement ambi-
tions to manage cumulative effects.

EIAs remain important, not only to maintain the polluter pays prin-
ciple, but, from a practical perspective, because EIAs provide higher res-
olution information, thus coordinated CEA-led EIAs offer the
opportunity to improve the resolution of the baseline. The development
of, for example, distribution modelling techniques (e.g. Reiss et al.,
2015) suggests that project-level data could become valuable to region-
al assessments (if made available), by increasing the resolution of tem-
poral and spatial datasets for habitats, species abundances and
distributions. Such a systemwould in theory be cost efficient for marine
industries as well as marine regulators and managers, by enabling a
more streamlined system to develop over time that builds on incremen-
tal advances in receptor understanding, appropriate boundaries and fit
for purpose monitoring that can respond to changes in environmental
conditions and system understanding.

The suggestion to systematically nest the informationwithin an eco-
logically meaningful area draws attention to the need for a
transboundary approach. In areaswheremultiple coastal states contrib-
ute to and need to manage cumulative effects, the need to share infor-
mation and CEA tools, compatibility of outputs and coordination of
governance mechanisms to manage cumulative effects increases in im-
portance.MREDs, as a relatively novel and rapidly expandingmarine in-
dustry, are a pressing issue in numerous regions, are potentially
associated with beneficial as well as short-term adverse environmental
effects (Boehlert and Gill, 2010; Linley et al., 2009), and hold strong po-
tential to reduce the greenhouse gas emissions associatedwith generat-
ing energy (Gibon and Hertwich, 2014). CEAs have been completed for
individual MRED developments during the planning and licensing pro-
cess, and considerablemonitoring data has been generated by individu-
al developments and via formal studies (e.g. Degraer et al., 2013).
Numerous CEAs also exist for stressors or pressures generated by
other marine industries (Korpinen et al., 2013; Wright and Kyhn,
2015; Foden et al., 2011a, 2011b). Further, CEAs exist for formal spatial
and ecosystem approach planning (e.g. UK regional marine plans), for
formal guidance (e.g. Heinis and de Jong, 2015), and much more com-
monly for academic research.

While much of the information from these sources may not be
immediately comparable, by defining common ground for CEA in a
given region, past CEAs could be revisited in light of unifying
receptor-centric metrics, and the outputs of future CEAs could be co-
ordinated. Establishing and using a regional baseline and regional
CEA database that incorporates habitat maps, cause-effect analyses,
effect-receptor analyses sensitivity analyses (for habitats and spe-
cies, including mobile species), would enable the use of shared or
compatible metrics in the assessment of effects and activities from
different sectors, placed in context of the environment (i.e.
receptor-led CEA). From a planning perspective, the efficiency and
accuracy of the database and its utility during planning should im-
prove through iterative development and improved connectivity be-
tween scientific advances and CEAs/EIAs.

The concept of nested approaches to support effective CEA is not
novel (e.g. MacDonald, 2000; Tamis et al., 2015). The system represent-
ed in Fig. 2 differs by making explicit the need to first define the mean-
ingful area, secondly agreeing the management and strategic planning
objectives for that area, and thirdly establishing a location-specific



Fig. 2. Summary schematic representing a nested system to coordinate CEAs within an ecologically meaningful area. The conceptual diagram encompasses a series of licensing activities
over a regional management system. The direction of arrows indicates the flow of information; double headed arrows indicate a flow of information in both directions to enable iterative
improvements in the regional CEA knowledge base.
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baseline that applies to all CEAs (or EIAs) completed for activities and
developments in the area. This systematic nested approach would clar-
ify the broader temporal and spatial boundaries relative to themeaning-
ful area and enable the development of a dynamic database where CEAs
completed for individual developments or activities benefit from and
feed into a regional CEA database that is available to regulators, marine
managers and researchers.

The system posited seeks to contribute to realising the potential of
CEA by clarifying the relationships between CEAs completed at different
scales and providing a common position fromwhich the complex, mul-
tifaceted problem of CEA, covering amultitude of activities, cause-effect
relationships and receptors can be broken into tractable chunks while
enabling the pieces of the puzzle to feed into a larger, regional picture.
The system seeks to evolve EIAs into fit for purpose assessments
that place clear expectations on developers and EIA practitioners rel-
ative to the information needs of marine managers and planners
concerned with effects accumulating at scales beyond those that
could be reasonably assessed by individual developments. Coordi-
nated CEA, building on a shared foundation, technically rigorous, col-
laborative and focussed on a common problem, would provide
decision-makers and the public with a shared narrative to debate
what trade-offs society at large is willing to accept in the pursuit of
economic growth and social wellbeing.

5. Conclusions

Cumulative effects assessment is an umbrella term for a broad range
of methodologies, driven by numerous drivers, that seek to assess how
past, current and future activities lead to changes in the environment
that impact the goods and services society derives. Themultitude of ap-
proaches, while problematic in one regard, holds greater promise to re-
duce the many uncertainties by enabling tractable chunks of the
problem to be addressed, providing the outputs are comparable and
can inform a regional picture. Within a meaningful area, whether de-
fined by jurisdictional or, preferably, ecological boundaries, the pressing
need is for CEA to evolve to provide comprehensive cumulative
environmental change assessments and it is of particular concern that
CEA advances to become themuchneeded tool decision-makers require
to sustainably manage the marine environment. For CEA to evolve to
fulfil this role requires existing knowledge, tools and future advances
frommultiple streams of research to be brought together within amod-
ular or iterative system that results in improvement characterisations of
ecosystems and the receptors therein, and the responses to variable and
interacting stressors. There is, therefore, a clear need to support coordi-
nated andmultidisciplinary development of CEA to advance our knowl-
edge of how cumulative effects from multiple activities (e.g. MREDs)
incrementally change the environment, and how effects can be man-
aged and mitigated to enable sustainable use of the seas. In Box 1 we
offer some tangible aspects for consideration, which will have to be
added into this process.

Reducing uncertainty regarding MRED cumulative effects is given
impetus by the pressing nature of climate change mitigation targets,
the need to meet energy security quotas, the demand for blue growth
and the drive to ensure the sustainable use of the marine environment
for this and future generations. Considering these varied demands
raise questions well beyond the remit of this paper, for example the in-
evitable value-driven trade-offs, as multiple interests compete for ac-
cess to resources that are resilient up to a point. Coordinated CEA
offers the potential for transparent, robust information that can frame
thewider debate required about the consequences of historical, current
and future anthropogenic activities in the seas.
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Box 1
Ten key considerations to advance CEA in defined ecological areas sub-
ject to integrated marine management.

• Define a meaningful area and the ecological receptors that
provide insight into the health and functions of the ecosys-
tem therein

• Establish a baseline, level of variability and the ‘most’ impor-
tant receptors that require assessment and monitoring (a
targeted approach may be a necessary starting point if there
are many such receptors)

• Define appropriate spatial and temporal scales, depending on
the ecological patterns, the level/magnitude of activities and
developments, cognisant of financial constraints (e.g. moni-
toring will need to reflect what is financially feasible
recognising that frequency may change depending on how
the system responds and confidence in effect significance
determinations)

• Integration at all levels: cross sectoral, cross border andmulti-
disciplinary approaches are a must, whilst attempting to un-
derstand cumulative effects. This is perhaps one of the prima-
ry weaknesses of current approaches which apply a narrow
perspective to what is a complex and multidisciplinary prob-
lem

• Validation of predicted effects as well as critical assessment
of the significance of changes following, for example con-
struction and operation of individual and multiple develop-
ments in a given area

• Define the significance of changes in ecological and manage-
ment terms. This will help to define and target an appropriate
level of effort for individual development assessments and
define the expected benefits of such efforts

• Explore and integrate indirect effects into CEAs, for example
using ecological modelling. Future research could compare
whether assessments focussed on ecological functions or in-
dicators thereof are more informative in support of marine
management ambitions than the current approach of
assessing isolated species protected by punitive legislation

• Accept and acknowledge the level of ‘uncertainty of these
changes’, as there will be areas that require further data col-
lection, dedicated specific tools and distinct approaches
(e.g. cross-border collaboration for migratory species, differ-
ent methodologies for sessile andmobile receptors). Directed
research targeted at priority cause-effect relationships at
scales relevant to key receptors would enable CEA to ad-
vance specific to an activity to advance (e.g. Electromagnetic
field (EMF) effects on sensitive species migrating across mul-
tiple cables)

• Recognise the temporal component of changes (e.g. short-
term construction effects, long-term operational effects, un-
known decommissioning effects) and integration of variable
effects into the licensing and management processes. Devel-
oping guidance for legislators, regulators and CEA/EIA practi-
tioners to adhere to support ecologically meaningful CEA will
be an important next step

• Consider implications of environmental change due to devel-
opment on social receptors and welfare, including the poten-
tial for short-term effects as well as long-term changes to
have significant impacts on, for example, individual vessel
earning capacity
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