11 research outputs found

    On the Meaning of Berry Force For Unrestricted Systems Treated With Mean-Field Electronic Structure

    Full text link
    We show that the Berry force as computed by an approximate, mean-field electronic structure can be meaningful if properly interpreted. In particular, for a model Hamiltonian representing a molecular system with an even number of electrons interacting via a two-body (Hubbard) interaction and a spin-orbit coupling, we show that a meaningful nonzero Berry force emerges whenever there is spin unrestriction--even though the Hamiltonian is real-valued and formally the on-diagonal single-surface Berry force must be zero. Moreover, if properly applied, this mean-field Berry force yields roughly the correct asymptotic motion for scattering through an avoided crossing. That being said, within the context of a ground-state calculation, several nuances do arise as far interpreting the Berry force correctly, and as a practical matter, the Berry force diverges near the Coulson-Fisher point (which can lead to numerical instabilities). We do not address magnetic fields here

    Non-adiabatic Dynamics in a Continuous Circularly Polarized Laser Field with Floquet Phase-space Surface Hopping

    Full text link
    Non-adiabatic chemical reactions involving continuous circularly polarized light (cw CPL) have not attracted as much attention as dynamics in unpolarized/linearly polarized light. However, including circularly (in contrast to linearly) polarized light allows one to effectively introduce a complex-valued time-dependent Hamiltonian, which offers a new path for control or exploration through the introduction of Berry forces. Here, we investigate several inexpensive semiclassical approaches for modeling such nonadiabatic dynamics in the presence of a time-dependent complex-valued Hamiltonian, beginning with a straightforward instantaneous adiabatic fewest-switches surface hopping (IA-FSSH) approach (where the electronic states depend on position and time), continuing to a standard Floquet fewest switches surface hopping (F-FSSH) approach (where the electronic states depend on position and frequency), and ending with an exotic Floquet phase-space surface hopping (F-PSSH) approach (where the electronic states depend on position, frequency, and momentum). Using a set of model systems with time-dependent complex-valued Hamiltonians, we show that the Floquet phase-space adiabats are the optimal choice of basis as far as accounting for Berry phase effects and delivering accuracy. Thus, the F-PSSH algorithm sets the stage for modeling nonadiabatic dynamics under strong externally pumped circular polarization in the future.Comment: 40 pages, 4 figure

    Total Angular Momentum Conservation in Ab Initio Born-Oppenheimer Molecular Dynamics

    Full text link
    We prove both analytically and numerically that the total angular momentum of a molecular system undergoing adiabatic Born-Oppenheimer dynamics is conserved only when pseudo-magnetic Berry forces are taken into account. This finding sheds light on the nature of Berry forces for molecular systems with spin-orbit coupling and highlights how ab initio Born-Oppenheimer molecular dynamics simulations can successfully capture the entanglement of spin and nuclear degrees of freedom as modulated by electronic interactions

    Practical Phase-Space Electronic Hamiltonians for Ab Initio Dynamics

    Full text link
    Modern electronic structure theory is built around the Born-Oppenheimer approximation and the construction of an electronic Hamiltonian H_{el}(X) that depends on the nuclear position X (and not the nuclear momentum P). In this article, using the well-known theory of electron translation (Gamma') and rotational (Gamma'') factors to couple electronic transitions to nuclear motion, we construct a practical phase-space electronic Hamiltonian that depends on both nuclear position and momentum, H_{PS}(X,P). While classical Born-Oppenheimer dynamics that run along the eigensurfaces of the operator H_{el}(X) can recover many nuclear properties correctly, we present some evidence that motion along the eigensurfaces of H_{PS}(X,P) can better capture both nuclear and electronic properties (including the elusive electronic momentum studied by Nafie). Moreover, only the latter (as opposed to the former) conserves the total linear and angular momentum in general

    A phase-space semiclassical approach for modeling nonadiabatic nuclear dynamics with electronic spin

    No full text
    Chemical relaxation phenomena, including photochemistry and electron transfer processes, form a vigorous area of research in which nonadiabatic dynamics plays a fundamental role. Here, we show that for nonadiabatic dynamics with two electronic states and a complex-valued Hamiltonian that does not obey time-reversal symmetry, the optimal semiclassical approach is to run surface hopping dynamics on a set of phase-space adiabatic surfaces. In order to generate such phase-adiabats, one must isolate a proper set of diabats and apply a phase gauge transformation, before eventually diagonalizing the total Hamiltonian (which is now parameterized by both R and P). The resulting algorithm is valid in both the adiabatic and nonadiabatic limits, incorporates all Berry curvature effects, and allows for the study of semiclassical nonadiabatic dynamics in the presence of spin-orbit coupling and/or external magnetic fields

    Direct cloning and heterologous expression of the salinomycin biosynthetic gene cluster from Streptomyces albus DSM41398 in Streptomyces coelicolor A3(2).

    Get PDF
    Linear plus linear homologous recombination-mediated recombineering (LLHR) is ideal for obtaining natural product biosynthetic gene clusters from pre-digested bacterial genomic DNA in one or two steps of recombineering. The natural product salinomycin has a potent and selective activity against cancer stem cells and is therefore a potential anti-cancer drug. Herein, we separately isolated three fragments of the salinomycin gene cluster (salO-orf18) from Streptomyces albus (S. albus) DSM41398 using LLHR and assembled them into intact gene cluster (106 kb) by Red/ET and expressed it in the heterologous host Streptomyces coelicolor (S. coelicolor) A3(2). We are the first to report a large genomic region from a Gram-positive strain has been cloned using LLHR. The successful reconstitution and heterologous expression of the salinomycin gene cluster offer an attractive system for studying the function of the individual genes and identifying novel and potential analogues of complex natural products in the recipient strain
    corecore