26 research outputs found

    Improved Hybrid Layered Image Compression using Deep Learning and Traditional Codecs

    Full text link
    Recently deep learning-based methods have been applied in image compression and achieved many promising results. In this paper, we propose an improved hybrid layered image compression framework by combining deep learning and the traditional image codecs. At the encoder, we first use a convolutional neural network (CNN) to obtain a compact representation of the input image, which is losslessly encoded by the FLIF codec as the base layer of the bit stream. A coarse reconstruction of the input is obtained by another CNN from the reconstructed compact representation. The residual between the input and the coarse reconstruction is then obtained and encoded by the H.265/HEVC-based BPG codec as the enhancement layer of the bit stream. Experimental results using the Kodak and Tecnick datasets show that the proposed scheme outperforms the state-of-the-art deep learning-based layered coding scheme and traditional codecs including BPG in both PSNR and MS-SSIM metrics across a wide range of bit rates, when the images are coded in the RGB444 domain.Comment: Submitted to Signal Processing: Image Communicatio

    Reactivation of Epsteinā€“Barr virus by a dual-responsive fluorescent EBNA1-targeting agent with Zn2+-chelating function

    Get PDF
    EBNA1 is the only Epsteinā€“Barr virus (EBV) latent protein responsible for viral genome maintenance and is expressed in all EBV-infected cells. Zn2+ is essential for oligomerization of the functional EBNA1. We constructed an EBNA1 binding peptide with a Zn2+ chelator to create an EBNA1-specific inhibitor (ZRL5P4). ZRL5P4 by itself is sufficient to reactivate EBV from its latent infection. ZRL5P4 is able to emit unique responsive fluorescent signals once it binds with EBNA1 and a Zn2+ ion. ZRL5P4 can selectively disrupt the EBNA1 oligomerization and cause nasopharyngeal carcinoma (NPC) tumor shrinkage, possibly due to EBV lytic induction. Dicer1 seems essential for this lytic reactivation. As can been seen, EBNA1 is likely to maintain NPC cell survival by suppressing viral reactivation

    Genomic Analyses for Selective Signatures and Genes Involved in Hot Adaptation Among Indigenous Chickens From Different Tropical Climate Regions

    No full text
    Climate change, especially weather extremes like extreme cold or extreme hot, is a major challenge for global livestock. One of the animal breeding goals for sustainable livestock production should be to breed animals with excellent climate adaptability. Indigenous livestock and poultry are well adapted to the local climate, and they are good resources to study the genetic footprints and mechanism of the resilience to weather extremes. In order to identify selection signatures and genes that might be involved in hot adaptation in indigenous chickens from different tropical climates, we conducted a genomic analysis of 65 indigenous chickens that inhabit different climates. Several important unique positively selected genes (PSGs) were identified for each local chicken group by the cross-population extended haplotype homozygosity (XP-EHH). These PSGs, verified by composite likelihood ratio, genetic differentiation index, nucleotide diversity, Tajimaā€™s D, and decorrelated composite of multiple signals, are related to nerve regulation, vascular function, immune function, lipid metabolism, kidney development, and function, which are involved in thermoregulation and hot adaptation. However, one common PSG was detected for all three tropical groups of chickens via XP-EHH but was not confirmed by other five types of selective sweep analyses. These results suggest that the hot adaptability of indigenous chickens from different tropical climate regions has evolved in parallel by taking different pathways with different sets of genes. The results from our study have provided reasonable explanations and insights for the rapid adaptation of chickens to diverse tropical climates and provide practical values for poultry breeding.publishe

    Synthesis of High-Crystallinity Mg-Al Hydrotalcite with a Nanoflake Morphology and Its Adsorption Properties for Cu<sup>2+</sup> from an Aqueous Solution

    No full text
    A magnesiumā€“aluminum-layered double hydroxide (Mg-Al LDH) with a nano-lamellar morphology was prepared by using a homogeneous precipitation and hydrothermal method, and a calcination product (Mg-Al LDO) of the Mg-Al LDH was also obtained in this work. The XRD, TEM, SEM, FTIR, N2 ad/desorption, and TG-DTG techniques were employed to characterize the microstructures, morphologies, and thermostability levels of these two materials in detail. The results showed that both the Mg-Al LDH and Mg-Al LDO had mesoporous structures and nanoplate morphologies, with diameters of 50~200 nm. The Mg-Al LDH was transformed into Mg-Al LDO at 773 K in an air atmosphere. The adsorption properties of the Mg-Al LDH were investigated systematically with a copper chloride solution as a simulated waste. The experimental results demonstrated that the pH value of the solution had an obvious influence on its Cu2+ adsorption capacity, and the optimal pH value was approximately 5.0. The adsorption kinetics results showed that the Mg-Al LDH had a rapid adsorption rate, and the equilibrium adsorption capacity was 62.11 mg/g. Additionally, the Cu2+ adsorption could be commendably described using a pseudo-second-order model, demonstrating that the adsorption behavior is regulated by chemical sorption. The adsorption thermodynamic results indicated that the adsorption process was spontaneous at temperatures above 318 K. Moreover, the Ī”G0 values decreased as the temperature was raised, which indicated that a higher temperature can cause a greater impetus for Cu2+adsorption. In addition, the positive values of the Ī”H0 indicated that the Cu2+ adsorption was endothermic, and the positive Ī”S0 values revealed an increase in the confusion at the solidā€“liquid interface of the adsorbent

    Genome-wide scan for selective footprints and genes related to cold tolerance in Chantecler chickens

    No full text
    The Chantecler chicken, a unique Canadian indigenous breed, is well adapted to extremely cold environments. However, its genetic characteristics have not been well studied. Here, we analyzed the whole genomes of 10 Chantecler chickens and 121 worldwide chickens, which indicated that Chantecler chickens were derived from commercial chickens and exhibit a high level of inbreeding. Based on a genome-wide scan, we identified two vital candidate regions containing ME3 and ZNF536, which are related to fat metabolism and nervous system in cold adaptation, respectively. We also found that the genetic mechanism of cold adaptation in Chantecler chickens differed from that of chickens from other cold regions, such as northern China. Our study indicated that specialized commercial chickens in the early 20th century contained sufficient genetic diversity to adapt to extreme cold environments over a very short time. These findings enrich our understanding of the adaptive potential of commercial species

    A Newly Discovered Phenylethanoid Glycoside from Stevia rebaudiana Bertoni Affects Insulin Secretion in Rat INS-1 Islet Ī² Cells

    No full text
    The tea-like beverage Stevia rebaudiana Bertoni (Stevia) is popular in China because it reduces blood glucose and has a sweet taste. In this work, a comprehensive quality assessment of Stevia led to the discovery of five phenylethanoid glycosides, namely steviophethanoside (1), cuchiloside (2), salidroside (3), icariside D (4), and tyrosol (5). Of them, compound 1 is a novel compound. Mass spectrometry and NMR spectroscopy were employed to confirm the absolute configuration. A hydrolytic step with 4 N TFA at 95 &deg;C for 4 h was used to confirm the monosaccharides. In addition, Discovery Studio 4.0 was used to predict the ADME and toxicity activity of compound 1. The results suggested that compound 1 was biocompatible and had poor toxicity, which was verified by rat INS-1 islet &beta; cells through an MTT assay. Meanwhile, a significant stimulatory effect on INS-1 cells was observed, which indicated a hypoglycemic effect of compound 1. This is the first report that describes a natural, novel, and hypoglycemic phenylethanoid glycoside in Stevia
    corecore