470 research outputs found

    Cosmic string Y-junctions: a comparison between field theoretic and Nambu-Goto dynamics

    Get PDF
    We explore the formation of cosmic string Y-junctions when strings of two different types collide, which has recently become important since string theory can yield cosmic strings of distinct types. Using a model containing two types of local U(1) string and stable composites, we simulate the collision of two straight strings and investigate whether the dynamics matches that previously obtained using the Nambu-Goto action, which is not strictly valid close to the junction. We find that the Nambu-Goto action performs only moderately well at predicting when the collision results in the formation of a pair of Y-junctions (with a composite string connecting them). However, we find that when they do form, the late time dynamics matches those of the Nambu-Goto approximation very closely. We also see little radiative emission from the Y-junction system, which suggests that radiative decay due to bridge formation does not appear to be a means via which a cosmological network of such string would rapidly lose energy.Comment: 17 pages, 17 figures; typo correctio

    Abelian Higgs Cosmic Strings: Small Scale Structure and Loops

    Get PDF
    Classical lattice simulations of the Abelian Higgs model are used to investigate small scale structure and loop distributions in cosmic string networks. Use of the field theory ensures that the small-scale physics is captured correctly. The results confirm analytic predictions of Polchinski & Rocha [1] for the two-point correlation function of the string tangent vector, with a power law from length scales of order the string core width up to horizon scale with evidence to suggest that the small scale structure builds up from small scales. An analysis of the size distribution of string loops gives a very low number density, of order 1 per horizon volume, in contrast with Nambu-Goto simulations. Further, our loop distribution function does not support the detailed analytic predictions for loop production derived by Dubath et al. [2]. Better agreement to our data is found with a model based on loop fragmentation [3], coupled with a constant rate of energy loss into massive radiation. Our results show a strong energy loss mechanism which allows the string network to scale without gravitational radiation, but which is not due to the production of string width loops. From evidence of small scale structure we argue a partial explanation for the scale separation problem of how energy in the very low frequency modes of the string network is transformed into the very high frequency modes of gauge and Higgs radiation. We propose a picture of string network evolution which reconciles the apparent differences between Nambu-Goto and field theory simulations.Comment: 16 pages, 17 figure

    Geodesic motion in the space-time of cosmic strings interacting via magnetic fields

    Full text link
    We study the geodesic motion of test particles in the space-time of two Abelian-Higgs strings interacting via their magnetic fields. These bound states of cosmic strings constitute a field theoretical realization of p-q-strings which are predicted by inflationary models rooted in String Theory, e.g. brane inflation. In contrast to previously studied models describing p-q-strings our model possesses a Bogomolnyi-Prasad-Sommerfield (BPS) limit. If cosmic strings exist it would be exciting to detect them by direct observation. We propose that this can be done by the observation of test particle motion in the space-time of these objects. In order to be able to make predictions we have to solve the field equations describing the configuration as well as the geodesic equation numerically. The geodesics can then be classified according to the test particle's energy, angular momentum and momentum along the string axis. We find that the interaction of two Abelian-Higgs strings can lead to the existence of bound orbits that would be absent without the interaction. We also discuss the minimal and maximal radius of orbits and comment on possible applications in the context of gravitational wave emission.Comment: v1: 22 pages including 17 figures; v2: new figure added, section on observables added; acccepted for publication in Phys. Rev.

    CMB power spectra from cosmic strings: predictions for the Planck satellite and beyond

    Get PDF
    We present a significant improvement over our previous calculations of the cosmic string contribution to cosmic microwave background (CMB) power spectra, with particular focus on sub-WMAP angular scales. These smaller scales are relevant for the now-operational Planck satellite and additional sub-orbital CMB projects that have even finer resolutions. We employ larger Abelian Higgs string simulations than before and we additionally model and extrapolate the statistical measures from our simulations to smaller length scales. We then use an efficient means of including the extrapolations into our Einstein-Boltzmann calculations in order to yield accurate results over the multipole range 2 < l 3000 in the case of the temperature power spectrum, which then allows cautious extrapolation to even smaller scales. We find that a string contribution to the temperature power spectrum making up 10% of power at l=10 would be larger than the Silk-damped primary adiabatic contribution for l > 3500. Astrophysical contributions such as the Sunyaev-Zeldovich effect also become important at these scales and will reduce the sensitivity to strings, but these are potentially distinguishable by their frequency-dependence.Comment: 18 pages, 16 figure

    CMB power spectrum contribution from cosmic strings using field-evolution simulations of the Abelian Higgs model

    Get PDF
    We present the first field-theoretic calculations of the contribution made by cosmic strings to the temperature power spectrum of the cosmic microwave background (CMB). Unlike previous work, in which strings were modeled as idealized one-dimensional objects, we evolve the simplest example of an underlying field theory containing local U(1) strings, the Abelian Higgs model. Limitations imposed by finite computational volumes are overcome using the scaling property of string networks and a further extrapolation related to the lessening of the string width in comoving coordinates. The strings and their decay products, which are automatically included in the field theory approach, source metric perturbations via their energy-momentum tensor, the unequal-time correlation functions of which are used as input into the CMB calculation phase. These calculations involve the use of a modified version of CMBEASY, with results provided over the full range of relevant scales. We find that the string tension μ\mu required to normalize to the WMAP 3-year data at multipole =10\ell = 10 is Gμ=[2.04±0.06(stat.)±0.12(sys.)]×106G\mu = [2.04\pm0.06\textrm{(stat.)}\pm0.12\textrm{(sys.)}] \times 10^{-6}, where we have quoted statistical and systematic errors separately, and GG is Newton's constant. This is a factor 2-3 higher than values in current circulation.Comment: 23 pages, 14 figures; further optimized figures for 1Mb size limit, appendix added before submission to journal, matches accepted versio

    Conpseudosimilarity and consemisimilarity over a division ring

    Get PDF
    AbstractIt is shown that for n × n matrices over a division ring which is finite dimensional over its center, the notions of consimilarity, conpseudosimilarity and consemisimilarity are all equivalent, provided the conjugation is strong

    Pseudo-consimilarity and semi-consimilarity of complex matrices

    Get PDF
    AbstractIt is shown that the notion of consimilarity of n-by-n complex matrices is equivalent to each of the new concepts of pseudo-consimilarity and semi-consimilarity. This equivalence is unlike similarity in that pseudo-similarity and similarity are equivalent, while semi-similarity is a weaker relation than (pseudo-) similarity

    On the stability of Cosmic String Y-junctions

    Get PDF
    We study the evolution of non-periodic cosmic string loops containing Y-junctions, such as may form during the evolution of a network of (p,q) cosmic superstrings. We set up and solve the Nambu-Goto equations of motion for a loop with junctions, focusing attention on a specific static and planar initial loop configuration. After a given time, the junctions collide and the Nambu-Goto description breaks down. We also study the same loop configuration in a U(1)xU(1) field theory model that allows composite vortices with corresponding Y-junctions. We show that the field theory and Nambu-Goto evolution are remarkably similar until the collision time. However, in the field theory evolution a new phenomenon occurs: the composite vortices can unzip, producing in the process new Y-junctions, whose separation may grow significantly, destabilizing the configuration. In particular, an initial loop with two Y-junctions may evolve to a configuration with six Y-junctions (all distant from each other). Setting up this new configuration as an initial condition for Nambu Goto strings, we solve for its evolution and establish conditions under which it is stable to the decay mode seen in the field theory case. Remarkably, the condition closely matches that seen in the field theory simulations, and is expressed in terms of simple parameters of the Nambu-Goto system. This implies that there is an easy way to understand the instability in terms of which region of parameter space leads to stable or unstable unzippings.Comment: 16 pages, 11 figures, typos correcte
    corecore