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S U M M A R Y
We present an analytical solution for the elastic deformation of an elastic, transversely isotropic,
layered and self-gravitating Earth by surface loads. We first introduce the vector spherical
harmonics to express the physical quantities in the layered Earth. This reduces the governing
equations to a linear system of equations for the expansion coefficients. We then solve for
the expansion coefficients analytically under the assumption (i.e. approximation) that in the
mantle, the density in each layer varies as 1/r (where r is the radial coordinate) while the
gravity is constant and that in the core the gravity in each layer varies linearly in r with
constant density. These approximations dramatically simplify the subsequent mathematical
analysis and render closed-form expressions for the expansion coefficients. We implement our
solution in a MATLAB code and perform a benchmark which shows both the correctness of
our solution and the implementation. We also calculate the load Love numbers (LLNs) of the
PREM Earth for different degrees of the Legendre function for both isotropic and transversely
isotropic, layered mantles with different core models, demonstrating for the first time the effect
of Earth anisotropy on the LLNs.

Key words: Composition of the planets; Elasticity and anelasticity; Dynamics: gravity and
tectonics; Mechanics, theory and modelling; Planetary interiors.

1 I N T RO D U C T I O N

Deformation of the Earth under various surface loadings is a much discussed but rather challenging topic (Farrell 1972; Spada et al. 2011;
Wang et al. 2012). The difficulties include accounting for the (approximately) spherical shape of the Earth, its internal material and mechanical
structure, and self-gravitation. In this work, we focus on Earth’s instantaneous elastic response to surface loading, and we defer consideration
of viscoelastic deformation to a future study.

Green’s function methods provide a powerful approach to a wide variety of engineering and scientific problems (for a review, see e.g. Pan
& Chen 2015). In Earth science for instance, in order to solve the general surface loading problem associated with a layered, self-gravitating,
spherical Earth, we need only to find the Green’s functions corresponding to a concentrated point force applied on the surface of the Earth.
Solutions of such Green’s functions are called the load Love numbers (LLNs) when expanding the solution in a spherical coordinate system.

So far the surface loading problem for a layered elastic (or viscoelastic) and self-gravitating Earth has been solved analytically only for
the case of an incompressible Earth, while the compressible case is usually solved numerically (e.g. Farrell 1972; Guo et al. 2004; Cambiotti
et al. 2009; Nield et al. 2014), except for the work by Gilbert & Backus (1968) where the gravity in each layer of the Earth was characterized
as a linear function of the radial coordinate r. Comparing to those derived numerically, analytical Green’s functions of the surface-loading or
the LLNs are computationally faster.

We present, in this paper, a new analytical method to derive the Green’s functions in response to a point load on the surface of a spherical,
transversely isotropic, layered and self-gravitating Earth. We have obtained this analytical solution under the assumption that, in the mantle
the density in each layer varies as 1/r and the gravity is constant, and that in the core the gravity in each layer varies linearly in r with constant
density. The solution is exact in case of a single layer for this specific Darwin’s law-type density profile. The solution is instead only an
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approximation in case of a layered Earth. However, we show that by increasing the number of layers, the solution tends exactly to the correct
one, differently from what happens with the Gilbert & Backus (1968) solution.

This paper is organized as follows. In Section 2, we present the governing equations of a transversely isotropic, layered and self-gravitating
Earth using the spherical coordinate system. We also recall the definition and main properties of the vector spherical harmonics (VSH). In
Section 3, we derive the analytical solution, and its application to the layered mantle in terms of propagator matrices. To achieve our goal, we
first derive the equations which govern the expansion coefficients. We then present the analytical solution for the expansion coefficients in
the mantle of the Earth under the assumption that, in each layer, the density varies as 1/r (where r is the radial coordinate) while the gravity
is constant. We finally obtain the propagator matrix and thus the solution in the layered mantle. In Section 4, the analytical solution in the
core is derived along with the corresponding core–mantle boundary conditions. In the core, we assume that the gravity in each layer varies
linearly in r with constant density. Also in this section, different core models are discussed. In Section 5, we define the LLNs. In Section 6,
we first validate our LLNs against the benchmarks (Spada et al. 2011), estimating the magnitude of the effect of the approximation on the
LLN. We then present numerical results of LLNs for five earth models, all based on Dziewonski & Anderson’s (1981) Preliminary Reference
Earth Model (PREM). Our earth models clearly demonstrate that with only 56 layers in the mantle and 26 layers in the core, we can achieve
a relative error of less than 1 per cent on the density and gravity distributions against the PREM model. Conclusions are drawn in Section 7.
Seven appendices are provided for the readers’ convenience.

2 G OV E R N I N G E Q UAT I O N S A N D V E C T O R S P H E R I C A L H A R M O N I C S

We assume a spherically layered Earth with each layer satisfying the following governing equations (e.g. Farrell 1972; Wu & Peltier 1982)

σ j i, j − (ρgur ),i − ρψ,i + g(ρu j ), jδir + fi = 0; ψ, j j + 4πG(ρu j ), j = 0. (1)

In eq. (1), repeated indices take the summation over the spherical coordinates (r, θ , φ) and an index following the subscript comma
indicates the derivative in the coordinate direction, G is the universal constant of gravitation, δ the Kronecker delta, σ ji the stresses, ρ and g
are the density and gravitational acceleration, fi the body forces (per unit volume), ui the displacements, and ψ is the perturbed gravitational
potential (which may include the tidal body-force, surface load and deformation potentials) with its negative gradient being the perturbed
gravity. This sign convention is the same as in Farrell (1972) and Wu & Peltier (1982), but opposite to that in Takeuchi & Saito (1972) and
Sun (1992).

Strain (tensor εij) and displacement relations in spherical coordinates are

εrr = ur,r ; εθθ = uθ,θ + ur

r
; εφφ = uφ,φ

r sin θ
+ uθ cot θ + ur

r

2εrθ = uθ,r + ur,θ − uθ

r
; 2εrφ = uφ,r + ur,φ

r sin θ
− uφ

r

2εθφ = uφ,θ − uφ cot θ

r
+ uθ,φ

r sin θ
. (2)

We also need the relation between the potential and its gradient which are coupled with the elastic displacements. We define it as the
‘generalized flux’ below

q = ψ,r + 4πGρur + n + 1

r
ψ, (3)

where n is the degree in the VSH defined below.
Instead of making the conventional assumption that the mantle is isotropic, we assume that the mantle is anisotropic but with a specific

axis of symmetry. This particular form of anisotropic medium is known as transversely isotropic in the literature (Anderson 1961). For the
spherical Earth, transverse isotropy means that the material axis of symmetry is along the radial direction and that the material property on
any sphere of given radius is isotropic. This allows us to analytically solve the equations including the anisotropic mantle layers given in
Dziewonski & Anderson (1981).

The Hooke’s law for each of the spherical mantle layer which is transversely isotropic with r-direction being its material axis of symmetry
is (Anderson 1961; Chen et al. 2015)

σrr = c33εrr + c13εθθ + c13εφφ

σθθ = c13εrr + c11εθθ + c12εφφ

σφφ = c13εrr + c12εθθ + c11εφφ

σθr = 2c44εθr ; σφr = 2c44εφr ; σθφ = 2c66εθφ, (4)

where cij are the elastic constants with c66 = (c11 – c12)/2.
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For the isotropic elastic material, eq. (4) is reduced to

c11 = c33 = λ + 2μ

c12 = c13 = λ; c44 = c66 = μ, (5)

where λ and μ are the two Lame’s elastic constants.
In the following, we will solve the equations under the general anisotropic formulation (4). The results for the usual isotropic case are

obtained automatically when eq. (5) is satisfied.
The interface conditions between any two adjacent layers (with superscript plus and subscript minus signs for them) in the mantle are

[ui ]
+
− = 0; [σri ]

+
− = 0; i = r, θ, φ

[ψ]+− = 0; [q]+− = 0. (6)

The surface condition and the condition at the core–mantle boundary will be discussed later in the paper.
To solve the loading problem we employ the VSH in terms of the spherical coordinates. The VSH is defined as (Ulitko 1979; Chen et al.

2015)

L(θ, φ; n, m) = er S(θ, φ; n, m)

M(θ, φ; n, m) = r∇S =
(

eθ ∂θ + eφ

∂φ

sin θ

)
S(θ, φ; n, m)

N(θ, φ; n, m) = r∇ × (er S) =
(

eθ

∂φ

sin θ
− eφ∂θ

)
S(θ, φ; n, m), (7)

where er, eθ and eφ are the unit vectors, respectively, along r-, θ - and φ-directions, and S is the normalized spherical harmonic function. It
should be noted that while L and M represent the spheroidal deformation (called LM-type deformation), N represents the toroidal deformation
(called N-type deformation). Some basic properties of this spherical harmonic function S and the VSH are provided in Appendix A for easy
reference.

Since the system (7) is orthonormal, we can expand any vector, such as the displacement u, radial traction t, as well as the scalar
gravitational potential ψ , and flux q in terms of the system as

u(r, θ, φ) =
∞∑

n=0

n∑
m=−n

[UL (r )L(θ, φ) + UM (r )M(θ, φ) + UN (r )N(θ, φ)]

t(r, θ, φ) ≡ σrr er + σrθ eθ + σrφeφ

=
∞∑

n=0

n∑
m=−n

[TL (r )L(θ, φ) + TM (r )M(θ, φ) + TN (r )N(θ, φ)]

f (r, θ, φ) =
∞∑

n=0

n∑
m=−n

[FL (r )L(θ, φ) + FM (r )M(θ, φ) + FN (r )N(θ, φ)]

ψ(r, θ, φ) =
∞∑

n=0

n∑
m=−n

�(r )S(θ, φ)

q(r, θ, φ) =
∞∑

n=0

n∑
m=−n

Q(r )S(θ, φ). (8)

We remark that the expansion coefficients on the right-hand side of eq. (8) depend on the coordinate r as well as on degree n and order
m (as the vector and scalar spherical harmonics do). In the following discussion, we concentrate on the case where n ≥ 1. The special case of
n = 0 (spherically symmetric deformation involving only vector function L) is presented in Appendix D.

3 A NA LY T I C A L S O LU T I O N S F O R T H E M A N T L E

3.1 Equations for the expansion coefficients

We first substitute the expansion expressions for the traction and flux into eqs (3) and (4), and compare the expansion coefficients on both
sides of the equations. This gives us, for n ≥ 1,

TL = 2c13
UL

r
+ c33U ′

L − n(n + 1)c13
UM

r
(9a)
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TM = c44

(
U ′

M + UL − UM

r

)
(9b)

Q = �′ + 4πGρUL + n + 1

r
� (9c)

TN = c44

(
U ′

N − UN

r

)
, (9d)

where a ‘prime’ denotes the derivative with respect to the radial coordinate (radius) r. Other four equations for the expansion coefficients can
be found from eq. (1) as,

T ′
L − n(n + 1)

TM

r
+ 2

TL

r
− 2c13

U ′
L

r
− 2(c11 + c12)UL

r 2
+ (c11 + c12)n(n + 1)UM

r 2
+ ρg

[
2UL

r
− n(n + 1)UM

r

]

− ρ

[
4πGρ − 2g

r

]
UL − ρ�′ = −FL (10a)

T ′
M + c13

U ′
L

r
+ (c11 + c12)UL

r 2
− c12n(n + 1)

UM

r 2
+ 3

TM

r
+ 2c66[1 − n(n + 1)]UM

r 2
− ρg

UL

r
− ρ

�

r
= −FM (10b)

2

r
�′ − n(n + 1)

r 2
� + (n + 1)

r 2
� − (n + 1)

r
�′ + Q ′ + 4πGρ

[
2UL

r
− n(n + 1)UM

r

]
= 0 (10c)

T ′
N + 3

TN

r
+ 2c66[1 − n(n + 1)/2]UN

r 2
= −FN . (10d)

It is clear from eqs (9) and (10) that the N-type (i.e. toroidal) deformation governed by eqs (9d) and (10d) is independent from the
LM-type (i.e. spheroidal) deformation governed by eqs (9a–c) and (10a–c). Furthermore, while the N-type deformation is decoupled from the
gravity and is governed by

U ′
N = UN

r
+ TN /c44

T ′
N = [n(n + 1) − 2]c66UN

r 2
− 3

TN

r
− FN , (11)

the LM-type deformation is coupled with the gravity and is governed by

TL = 2c13
UL

r
+ c33U ′

L − n(n + 1)c13
UM

r
(12a)

TM = c44

(
U ′

M + UL − UM

r

)
(12b)

�′ + 4πGρUL + (n + 1)

r
� = Q (12c)

T ′
L − n(n + 1)

TM

r
+ 2

TL

r
− 2c13

U ′
L

r
− 2(c11 + c12)UL

r 2
+ (c11 + c12)n(n + 1)UM

r 2
+ ρg

[
4UL

r
− n(n + 1)UM

r

]
− 4πGρ2 − ρ�′ = −FL

(12d)

T ′
M + c13

U ′
L

r
+ (c11 + c12)UL

r 2
− c12n(n + 1)

UM

r 2
+ 3

TM

r
+ 2c66[1 − n(n + 1)]UM

r 2
− ρg

UL

r
− ρ

�

r
= −FM (12e)

1 − n

r
Q − 4πGρUL

1 − n

r
+ Q ′ + 4πGρ

[
2UL

r
− n(n + 1)UM

r

]
= 0. (12f)

Eq. (12) can be converted to the following standard first-order differential equations

U ′
L = −2c13

c33

UL

r
+ n(n + 1)

c13

c33

UM

r
+ TL

c33
(13a)
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U ′
M = −UL

r
+ UM

r
+ TM

c44
(13b)

�′ = −4πGρUL − (n + 1)

r
� + Q (13c)

T ′
L = −4ρgUL

r
+ 2[c33(c11 + c12) − 2c2

13]UL

c33r 2
+ n(n + 1)ρgUM

r
+ [2c2

13 − c33(c11 + c12)]n(n + 1)UM

c33r 2

+ 2

r
(c13/c33 − 1)TL + n(n + 1)TM

r
− (n + 1)

r
ρ� + ρQ − FL (13d)

T ′
M = ρgUL

r
+ [2c2

13 − c33(c11 + c12)]UL

c33r 2
− (c11 − c12)

UM

r 2
+ n(n + 1)

c11c33 − c2
13

c33

UM

r 2
− c13TL

c33r
− 3TM

r
+ ρ�

r
− FM (13e)

Q ′ = −4πGρ
(n + 1)UL

r
+ 4πGρ

n(n + 1)UM

r
+ n − 1

r
Q. (13f)

For the isotropic case, making use of eq. (5), we have

U ′
L = − 2λ

(λ + 2μ)

UL

r
+ n(n + 1)

λ

(λ + 2μ)

UM

r
+ TL

(λ + 2μ)
(14a)

U ′
M = −UL

r
+ UM

r
+ TM

μ
(14b)

�′ = −4πGρUL − (n + 1)

r
� + Q (14c)

T ′
L = −4ρgUL

r
+ 4μ(3λ + 2μ)UL

(λ + 2μ)r 2
+ n(n + 1)ρgUM

r
− 2μ(3λ + 2μ)n(n + 1)UM

(λ + 2μ)r 2

− 4μ

(λ + 2μ)

TL

r
+ n(n + 1)TM

r
− (n + 1)

r
ρ� + ρQ − FL (14d)

T ′
M = ρgUL

r
− 2μ(3λ + 2μ)UL

(λ + 2μ)r 2
+ 2μ[2n(n + 1)(λ + μ) − (λ + 2μ)]

(λ + 2μ)

UM

r 2
− λTL

(λ + 2μ)r
− 3TM

r
+ ρ�

r
− FM (14e)

Q ′ = −4πGρ
(n + 1)UL

r
+ 4πGρ

n(n + 1)UM

r
+ n − 1

r
Q. (14f)

We point out that in deriving eqs (11) and (13), the density and elastic coefficients can all be of arbitrary functions of r and that the
gravitational acceleration or gravity g is related to the density by the Newton’s gravitational law. We emphasize again that the formulations
derived in this section hold only for the mantle materials with degrees n ≥ 1. We point out also that eqs (14a)–(14f) for the reduced isotropic
case are the same first-order system of equations derived and used in the literature (e.g. Wu & Peltier 1982).

3.2 Analytical solutions for the expansion coefficients

While the analytical solution of eq. (11) for the toroidal deformation can be easily found (Watson & Singh 1972), that of eq. (14) for the
spheroidal deformation has been always solved numerically, except for the incompressible case (Wu & Peltier 1982) and for the case where
the term g/r in the governing equation is assumed to be constant in each layer (Gilbert & Backus 1968). In this paper, we solve eq. (13)
analytically by assuming that the density in each layer of the mantle varies as 1/r, whilst the elastic properties and the gravity g are constant
in each layer. As a special case we therefore obtain also the solution for an isotropic mantle material as governed by eq. (14).

Let us first assume that the mantle is composed of p layers, with layer j of the layered Earth is bonded on its top at r = rj and its bottom at
r = rj−1 so that the thickness of layer j is hj = rj − rj−1 (Fig. 1). The bottom surface of the first layer is at r = r0 ≡ rc, that is the core–mantle
boundary of the Earth. The structure of the liquid core will be analysed later on.
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Figure 1. A layered spherical Earth made of p layers in its mantle with an inner (layered) liquid core of radius r0 = rc. The outer surface of the Earth is located
at rp = a. Surface load is applied on r = a. In each mantle layer, the density is approximated to vary as 1/r, and the elastic coefficients as well as the gravity
are assumed to be constant.

Within a given layer j, eq. (13) can be solved analytically if we assume that the gravity is constant whilst the density ρ varies as

ρ(r ) = ρ̄r̄/r. (15)

We point out that the density profile of eq. (15) is one of the so-called Darwin’s law profiles (see, e.g. Martinec et al. 2001). In the
present approach we model the Earth as a sort of expansion in a (finite) number of ‘Darwinian’ layers.

In case of a layered Earth, ρ̄ in eq. (15) must be chosen such that the total mass is conserved in each layer. Starting from a reference
model with constant density layers and choosing ρ̄ as the volume-average density of layer j, then r̄ is determined by

r̄ = 2(r 3
j − r 3

j−1)

3(r 2
j − r 2

j−1)
. (16)

Eq. (16) ensures that the mass is conserved in the layer and as such, r̄ is, in general, different from the geometric mean of layer j.
It is noted, however, that through eq. (15) we introduce artificial discontinuities in the density profile between the adjacent layers. This

is part of the price we pay to be able to have an analytic solution.
For the given density distribution one can find the gravity g(r) in each layer using Newton’s gravitational law.

g(r ) = 4πG

r 2

∫ r

0
ρ(s)s2ds. (17)

Note that, according to eq. (17), in case of a pure Darwin’s law profile like eq. (15), g is constant. Therefore the solution is exact in
the case of a single layer. This is not true anymore in a layered Earth. However, to be able to use this solution in a layered mantle, we have
also to assume that g is constant within each layer. This introduces of course an error in the model, and the solution will depart from the
correct one. We will estimate this discrepancy in the section devoted to the numerical results, where we will also show that by tuning the
number of density layers, this error can be made arbitrarily small. As a side comment, we emphasize that for the PREM model, the constant
g assumption is actually not extremely inaccurate since the gravity varies gently within each layer as will be shown later in the numerical
section. We further point out that a general and interesting discussion on the density distribution and the corresponding gravity variation can
be found in Vermeersen & Mitrovica (2000) and Martinec et al. (2001).

Under the assumption of eq. (15) and g = constant, eq. (13) can be converted to the following first-order differential system of equations:

U ′
L = −2c13

c33

UL

r
+ n(n + 1)

c13

c33

UM

r
+ TL

c33
(18a)

U ′
M = −UL

r
+ UM

r
+ TM

c44
(18b)
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�′ = −4πGρ̄r̄

r
UL − (n + 1)

r
� + Q (18c)

T ′
L = −4ρ̄r̄ gUL

r 2
+ 2[c33(c11 + c12) − 2c2

13]UL

c33r 2
+ n(n + 1)ρ̄r̄ gUM

r 2
+ [2c2

13 − c33(c11 + c12)]n(n + 1)UM

c33r 2

+ 2

r
(c13/c33 − 1)TL + n(n + 1)TM

r
− (n + 1)ρ̄r̄

r 2
� + ρ̄r̄

r
Q − FL (18d)

T ′
M = ρ̄r̄ gUL

r 2
+ [2c2

13 − c33(c11 + c12)]UL

c33r 2
− (c11 − c12)

UM

r 2
+ n(n + 1)

c11c33 − c2
13

c33

UM

r 2
− c13TL

c33r
− 3TM

r
+ ρ̄r̄�

r 2
− FM (18e)

Q ′ = − (n + 1)4πGρ̄r̄UL

r 2
+ n(n + 1)4πGρ̄r̄UM

r 2
+ n − 1

r
Q. (18f)

We now seek the solutions to the corresponding homogeneous systems of eqs (11) and (18). Looking at the right-hand sides of these
equations, one immediately observes that the radial coordinate r appears in the displacement/potential and traction/flux expansion coefficients
with a power that differs by one order, a feature similar to the linear elasticity (e.g. Watson & Singh 1972; Chen et al. 2015). Thus, in order
to solve these homogeneous systems of equations, we introduce, for a given layer j with interfaces at r = rj−1 and rj (>rj−1) the following
variable transformation as in Chen et al. (2015)

r = r j−1eξ 0 ≤ ξ ≤ ξ j ; ξ j = ln(r j/r j−1). (19)

Under this transformation, the homogeneous systems of eqs (11) and (18) with the special r-dependence coefficients are converted to
the following ones with constant coefficients[

U ′
N

rT ′
N

]
=

[
1 1/c44

−c66[2 − n(n + 1)] −3

] [
UN

rTN

]
(20a)

[
R2 0

−R5 I

] [
U ′

r T ′

]
=

[
−R1 I

R4 R3

][
U

r T

]
, (20b)

where the prime now indicates the derivative with respect to ξ , not with respect to r, and

U =
[

UL UM �

]t
; T =

[
TL TM Q

]t
. (21)

The elements of the constant matrices Ri in eq. (20b) are listed in Appendix B.
Treating r(ξ )TN and r(ξ )T as new functions, eq. (20) can be recast into the following first-order differential equations with constant

coefficients[
U ′

N

(rTN )′

]
= [BN ]

[
UN

rTN

]
(22a)

[
U ′

(r T )′

]
= [B]

[
U

r T

]
. (22b)

In eq. (22),

[BN ] =
[

1 1/c44

−c66[2 − n(n + 1)] −2

]
(23a)

[B] =
[

R−1
2 0

R5 R−1
2 I

] [
−R1 I

R4 R3 + I

]
. (23b)

Notice again that in case of a uniform Earth with Darwin’s law profile (i.e. eq. 15), these equations are exact.
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3.3. Propagator matrices and solutions in layered mantle

First, since the coefficient matrices in eq. (22) are independent of ξ , we can analytically find their eigenvalues and the corresponding
eigenvectors to form the general solutions of eq. (22) inside each layer. In terms of the exponential matrix formalism directly (i.e. Gantmacher
1977), the analytical solution in each layer can be simply expressed as[

UN (ξ )

r (ξ )TN (ξ )

]
= exp

(
BN ξ

) [
UN (0)

rTN (0)

]
(24a)

[
U (ξ )

r (ξ )T (ξ )

]
= exp (Bξ )

[
U (0)

r T (0)

]
. (24b)

Now, for layer i, with its inner and outer interfaces at r = ri−1 and ri, the expansion coefficients at its interfaces are connected through[
UN (ξi )

ri TN (ξi )

]
= exp

(
BN

i ξi

) [
UN (ξi−1)

ri−1TN (ξi−1)

]
(25a)

[
U (ξi )

ri T (ξi )

]
= exp (Biξi )

[
U (ξi−1)

ri−1T (ξi−1)

]
. (25b)

Making use of the interface continuity conditions (eq. 6) between any adjacent layers, which requires that the expansion coefficients be
continuous as

[UL ]+− = 0; [UM ]+− = 0; [UN ]+− = 0

[TL ]+− = 0; [TM ]+− = 0; [TN ]+− = 0

[�]+− = 0; [Q]+− = 0, (26)

we can propagate the solution (25) from the core–mantle boundary r = rc (r0) all the way to the surface of the Earth at r = a (rp). This gives
us[

UN (ξp)

aTN (ξp)

]
|r=a = exp

(
BN

p ξp

)
exp

(
BN

p−1ξp−1

) · · · exp
(
BN

1 ξ1

) [
UN (ξ )

rcTN (ξ )

] ∣∣
r=rc (27a)

[
U(ξp)

aT (ξp)

]
|r=a = exp

(
B pξp

)
exp

(
B p−1ξp−1

) · · · exp (B1ξ1)

[
U(ξ )

rcT (ξ )

] ∣∣
r=rc, (27b)

Making use of the interface conditions on the core–mantle boundary at r = rc and the surface conditions at r = a, eq. (27) can be
solved for the involved unknowns on both sides. After that, the expansion coefficients at any r-level within any layer can be found by simply
employing the propagating relation (24).

We point out again that the formulations derived so far hold only for the mantle of the Earth and for degree n ≥ 1. We now discuss and
derive the solutions in the core.

4 A NA LY T I C A L S O LU T I O N S I N T H E C O R E A L O N G W I T H T H E C O R E - M A N T L E
B O U N DA RY C O N D I T I O N S

This section again is for degree n ≥ 1. Three core models that have been studied in recent literature will be discussed. A layered core made
of m layers over a homogeneous inner core of radius r = r0 is sketched in Fig. 2.

In order to develop our analytic approach, we assume that, in each core layer, the density is constant and gravity is linear in radius as
g = kr (Gilbert & Backus 1968). As for the mantle case, these assumptions are consistent with eq. (17) for a single layer, but are instead an
approximation to the correct physics when enforced inside each layer. We emphasize that this assumption is to ensure an analytical solution
in each layer of the core (see, Gilbert & Backus 1968; Martinec 2000; Cambiotti et al. 2009). We further point out that this specific choice of
constant density and linear gravity is actually a good approximation. By examining the PREM model, it is apparent that a reasonable model
for approximating the layered core is to assume that, in each layer, the gravity is linear in radius as g = kr with constant density (Gilbert
& Backus 1968). In any case, the accuracy of the model needs to be compared with the PREM model, as we will discuss in the numerical
section. In the following, however, we first turn our attention to the three common core models.
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Figure 2. A layered core of the Earth made of m layers over a homogeneous inner core of radius r = r0. Its outer surface is the core–mantle boundary at
rm = rc. In each layer, the gravity is assumed to vary linearly in r with constant density.

4.1 Layered and compressible core

For this model, we follow Saito (1974) and Sun (1992) by introducing the new variable Y which is related to Q, TL and � as

Y = Q − 4πG

g
TL = �′ +

(
n + 1

r
− 4πρG

g

)
�. (28)

Then, one can derive the following first-order differential system of equations for � and Y as

�′ =
(

4πρG

g
− n + 1

r

)
� + Y

Y ′ = 8πGρ(n − 1)

gr
� +

(
n − 1

r
− 4πρG

g

)
Y, (29)

where the density ρ can be any function of r, and the gravity g is related to the density via Newton’s gravitational law (17).
To solve this system of equations analytically, we subdivide the core into layers and assume that in each layer the density ρ can be

approximated as constant and that the gravity as a linear function g = kr. The case of a single layer with constant ρ implies g = kr (eq. 17).
So in this case the equations are correct, and the solution is exact. In case of a layered core model, this assumption violates the relation (17)
between ρ and g, and therefore the corresponding solutions are not correct any more. However, we will show that the effect introduced by this
‘error’ can be controlled by choosing the number and thickness of the layers. Now, under the constant density and linear gravity assumption,
eq. (29) is reduced to

�′ = a11
�

r
+ a12Y

Y ′ = a21
�

r 2
+ a22

Y

r
. (30)

with the constant coefficients aij being

a11 = 4πGρ/k − (n + 1); a12 = 1

a21 = 8πGρ(n − 1)/k; a22 = (n − 1) − 4πGρ/k. (31)

It should be remarked that the structure of eq. (30) can be also achieved by assuming that, in each core layer, the density ρ follows 1/r
and the gravity g is constant (excluding the innermost layer of the core where one can assume a constant density with a linear gravity, for
example Wu & Peltier 1982). However, the first choice is more natural, since the PREM core model indicates that a linear gravity is a better
approximation to the gravity distributions in the core than the constant gravity approximation.
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Similar to the first-order differential equations governing the N-type deformation (eqs 20a and 24a), eq. (30) has an analytical solution
in each given layer and thus the following propagating relation in terms of the transformed variable ξ[

� (ξ )

r (ξ )Y (ξ )

]
= exp (Aξ )

[
� (0)

rY (0)

]
, (32)

where

[A] =
[

a11 a12

a21 a22 + 1

]
. (33)

In the innermost core layer with a small radius r ≤ r0, eq. (29) has the following solution,[
�

rY

]
=

[
rn

2(n − 1)rn

]
. (34)

Thus, we can propagate this solution from r = r0 to the core-mantle boundary at r = rc to obtain[
�(ξ )

rcY (ξ )

] ∣∣
r=rc = exp (Amξm) exp (Am−1ξm−1) · · · exp (A1ξ1)

[
rn

0

2(n − 1)rn
0

]
. (35)

Then the physical quantities on the core side of the core-mantle boundary can be transferred to the mantle side using (Saito 1974; Sun
1992)

[
U (ξ )

rcT (ξ )

] ∣∣
rc = [Bc]

⎡
⎢⎢⎣

c1

c2

c3

⎤
⎥⎥⎦ , (36)

where ci (i = 1, 2, 3) are the three unknown coefficients and Bc is the core–mantle matrix given as

[Bc] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1

0 1 0

�(rc) 0 0

rcρ(rc)�(rc) 0 rcρ(rc)g(rc)

0 0 0

rcY (rc) + 4πGrcρ(rc)�(rc)/g(rc) 0 4πGrcρ(rc)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (37)

We point out that while the second column in eq. (37) indicates that the tangential displacement at the bottom of the mantle is not
restricted by the conditions in the core, the first and third columns are the two general solutions on the core side of the core–mantle boundary
which are continuously transferred to the mantle side (Saito1974; Sun 1992).

Passing the solution from the core to the mantle, and propagating the result to the surface of the Earth, we finally have

[
U(ξp)

aT (ξp)

]
|r=a = exp

(
B pξp

)
exp

(
B p−1ξp−1

) · · · exp (B1ξ1) [Bc]

⎡
⎢⎢⎣

c1

c2

c3

⎤
⎥⎥⎦ . (38)

The three unknown coefficients ci on the right-hand side of eq. (38) can be solved by the boundary conditions on the surface of the Earth
r = a, which will be discussed later.

4.2 Layered and incompressible core

It can be shown that under the assumption of an incompressible core, the potential field in the core is independent of the elastic deformation
and further satisfies the following first-order differential equations (Wu & Peltier 1982)

�′ = 4πGρ

g
� − n + 1

r
� + Q

Q ′ = 8πGρ(n − 1)

gr
� + n − 1

r
Q − 4πGρ

g
Q, (39)

where again the density ρ can be any function of r, and the gravity g is related to the density via Newton’s gravitational law (17).
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This first-order differential system of equations is exactly the same as eq. (29). Therefore, it assumes the same initial solution when
r ≤ r0, as in eq. (34) but for the function pairs (�, Q)[

�

r Q

]
=

[
rn

2(n − 1)rn

]
. (40)

Similarly, we subdivide the core into layers and assume that in each layer the density ρ is approximated as constant and the gravity is
approximated as linear g = kr. Just like in the layered compressible core, this assumption is exact in case of a uniform core. We then arrive at
the same matrix [A] as in eq. (33). We therefore have the same propagating relation eq. (35) (one needs just to replace Y by Q in eq. 35). Once
being propagated to the core–mantle boundary rc, we obtain eq. (38), but with the new core–mantle boundary matrix [Bc] being defined as

[Bc] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−�(rc)/g(rc) 0 1

0 1 0

�(rc) 0 0

0 0 rcρ(rc)g(rc)

0 0 0

rc Q(rc) 0 4πGrcρ(rc)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (41)

Thus, solutions for the incompressible and layered core case are derived.
We point out that, for a fixed mantle model, the layered compressible and layered incompressible cores predict exactly the same LLNs

under the core–mantle conditions (37) and (41) presented in the paper. This is due to the fact that the first column in eq. (37) is a linear
combination of the first and third columns of eq. (41).

4.3 Homogeneous and incompressible core

If we assume that the liquid core is homogeneous and incompressible, then the same solution (40) can be applied to the entire core. Making
use of the continuity conditions on the core–mantle boundary r = rc, we have, on the mantle side of r = rc, the following relations

UL = − 3rn−1
c

4πGρc
c1 + c3; UM = c2; UN = c4

TL = 4πGρ2
c rc

3
c3; TM = 0; TN = 0

� = rn
c c1; Q = 2(n − 1)rn−1

c c1 + 4πGρcc3 (42)

where again ci (i = 1−3) are the three coefficients to be determined by the boundary conditions applied on the surface of the Earth. Thus, in
the propagating relation (38), the core-mantle boundary matrix [Bc] for this simple homogeneous and incompressible core model is reduced
to

[Bc] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 3rn−1
c

4πGρc
0 1

0 1 0

rn
c 0 0

0 0 4πGρ2
c r2

c
3

0 0 0

2(n − 1)rn
c 0 4πGρcrc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (43)

5 L OA D L OV E N U M B E R S

For the first two core models (layered compressible and layered incompressible), we can propagate the analytical solutions from the center of
the core to the core–mantle boundary at r = rc. Then for all the three core models (including the homogeneous incompressible core model),
we can propagate the solution from the core–mantle boundary to the surface so that we finally have, on the surface of the Earth r = a (=rp),

[
U(ξp)

aT (ξp)

]
|r=a =

[
A1

A2

] ⎡
⎢⎢⎣

c1

c2

c3

⎤
⎥⎥⎦ , (44)
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where[
A1

A2

]
= exp

(
B pξp

)
exp

(
B p−1ξp−1

) · · · exp (B1ξ1) [Bc]. (45)

For the surface loading case, the boundary conditions for the expansion coefficients on the surface r = a can be expressed as

TL (a) = −gaCm
n ; TM (a) = 0

Q(a) = −4πGCm
n , (46)

where we have assumed that the product of the load height (e.g. tide height) and density (i.e. water density) as a single scalar function can be
expanded as

γ (θ, φ) =
∞∑

n=0

n∑
m=−n

Cm
n S(θ, φ), (47)

where Cm
n are the expansion coefficients

Therefore, making use of the boundary conditions (46) at r = a, we can solve the three unknown coefficients ci in eq. (44) by using the
last three expressions. After that, the first three expressions in eq. (44) can be used to find UL, UM and � on the surface of the Earth at r = a.

By definition of the LLN (neglecting the prime sign in the LLN), we have the following expressions for the LLN (in proportion to the
magnitude of the perturbed potential ψ l)

hn = (2n + 1)UL (a)ga/(4πGCm
n )

ln = (2n + 1)UM (a)ga/(4πGCm
n )

kn = −[(2n + 1)�(a)ga/(4πGCm
n ) + 1]. (48)

We point out that eq. (48) is the expression for the LLNs of degrees n > 1. For n = 1, since the rigid-body motion is involved, one can
solve the three first-degree LLNs by assuming that the center of mass of the Earth plus the surface load (CE) is fixed in space as in Farrell
(1972) or by simply using the centre of mass (CM) system as in Spada et al. (2011). Detailed discussions on the perturbed potential and
definition of the LLNs for n = 1 are given in Appendix C. The analytical solution and the LLN for degree n = 0 are also discussed and are
presented in Appendix D.

6 N U M E R I C A L R E S U LT S

6.1 LLNs of the benchmark example

The analytical solutions are coded in MATLAB and are first checked against the benchmark numerical results in Spada et al. (2011). The
simple earth model contains four incompressible layers in the mantle over a homogeneous and incompressible core. Each mantle layer is
isotropic with a constant density and a shear modulus. This benchmark model is taken from table 3 of Spada et al. (2011) with its details
being also provided in Appendix E for easy reference. We point out that, different from Spada et al. (2011), here we assumed that, in each
layer, the density follows the 1/r-variation as in eq. (15) with ρ̄ being the constant density in Spada et al. (2011). The gravity in each layer is
constant, being the average over the layer governed by the Newton’s law (17). We remark that while piecewise constant density distribution
in Spada et al. (2011) may not be the best approximation to the real earth model, this five-layer model provides an excellent benchmark and
it is a good reference for assessing the accuracy of a code in predicting the deformation of the Earth subject to mass and tidal loading.

In order to apply our analytical solutions and the corresponding code to this piecewise constant layering structures, we approximate
each layer of constant density by different numbers of layers where their density is proportional to 1/r and the gravity is constant. Again, the
average constant gravity in each layer is calculated via Newton’s gravitational law (17) up to that layer. In order to prove that the present
approach works, we want first to measure the effect of the approximation for the density and of the decoupling of density and gravity on the
LLN. This is performed using the same number of layers as the original benchmark model.

The second step is to show that these effects can be made arbitrarily small by increasing the number of artificial layers. This shows
that the benchmark model can be effectively approximated arbitrarily well by a model with the same elastic properties, but an artificially
fine layering in the density, necessary to be able to apply the analytic solutions layer by layer. To do so, we use the following simple j-step
subdivision process: at the step j, we subdivide each of the 4 mantle layers into 2j equally spaced sublayers. Each of this sub-layer has the
same elastic properties as the original one. But for each of them, a finer approximation of the density profile according to eqs (15) and (16) is
obtained. In this way, at step j, the mantle consists of 4 × 2j layers, with step j = 0 being the original five-layer benchmark model.

The calculated LLNs (−hn, −ln, and −kn) from our code are listed in Tables 1 and 2. While Table 1 shows the LLNs for degrees n = 2
and 3 at different subdivision steps j, Table 2 lists, at step j = 18, the LLNs calculated by our code as compared to those from Spada et al.
(2011). It is observed from Table 1 that, with increasing step j or increasing layer numbers, our LLNs are clearly convergent to the benchmark
results. Furthermore, they are all convergent monotonically, in terms of magnitude, from above to (except for j < 4) the benchmark LLNs
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Table 1. LLNs for degrees 2 and 3 of the five-layer earth model used in Spada et al. (2011) obtained
by the present analytical solutions with different refinements. More specifically, the constant density in
each layer is approximated by a density variation of 1/r with different subdivisions of layers following
4 × 2j in each subdividing step j. The final row (labelled as SP) contains the values from Spada et al.
(2011).

j −h2(×10−1) −l2(×10−1) −k2(×10−1) −h3(×10−1) −l3(×10−2) −k3(×10−1)

0 4.54412295 1.32299524 2.40720605 4.64747818 6.96395022 1.61080459

1 4.54655807 1.29472337 2.43426482 4.62071528 6.79989917 1.63225980

2 4.54447274 1.28625243 2.43977390 4.61244771 6.74702937 1.63718893

3 4.54222021 1.28366344 2.44047219 4.60900655 6.73150117 1.63809774

4 4.54078890 1.28279562 2.44031804 4.60744423 6.72665777 1.63816950

5 4.53999750 1.28246932 2.44011625 4.60670253 6.72497713 1.63811055

6 4.53958293 1.28233312 2.43998426 4.60634155 6.72432270 1.63805743

7 4.53937093 1.28227177 2.43991050 4.60616353 6.72404200 1.63802496

8 4.53926375 1.28224277 2.43987168 4.60607513 6.72391327 1.63800725

9 4.53920987 1.28222870 2.43985179 4.60603109 6.72385182 1.63799803

10 4.53918285 1.28222177 2.43984172 4.60600911 6.72382182 1.63799333

11 4.53916933 1.28221833 2.43983665 4.60599813 6.72380700 1.63799095

12 4.53916256 1.28221661 2.43983411 4.60599264 6.72379963 1.63798976

13 4.53915917 1.28221576 2.43983284 4.60598990 6.72379596 1.63798916

14 4.53915748 1.28221533 2.43983220 4.60598852 6.72379413 1.63798886

15 4.53915663 1.28221512 2.43983189 4.60598784 6.72379321 1.63798871

16 4.53915621 1.28221501 2.43983173 4.60598749 6.72379276 1.63798864

17 4.53915600 1.28221496 2.43983165 4.60598733 6.72379253 1.63798860

18 4.53915588 1.28221493 2.43983160 4.60598723 6.72379240 1.63798858

SP 4.5391558 1.2822149 2.4398316 4.6059872 6.7237923 1.6379886

Table 2. Comparison of LLNs obtained at refinement step j = 18 and those in parentheses reported in Spada
et al. (2011). Note that the LLN l of degree n = 256 was convergent at an early step j = 16 with its value being
−2.06125011 × 10−4. The results for degree n = 1 are based on the centre of mass (CM) reference system.

n −hn −ln −kn

1 1.01748425 (1.0174843) 1.08122247 (1.0812225) 1.0 (1.0)

2 4.53915588E-1 (4.5391558E-1) 1.28221493E-1 (1.2822149E-1) 2.43983160E-1 (2.4398316E-1)

3 4.60598723E-1 (4.6059872E-1) 6.72379240E-2 (6.7237923E-2) 1.63798858E-1 (1.6379886E-1)

4 4.53094444E-1 (4.5309444E-1) 5.54990941E-2 (5.5499093E-2) 1.17385746E-1 (1.1738574E-1)

5 4.69288024E-1 (4.6928802E-1) 5.21188443E-2 (5.2118844E-2) 9.47296337E-2 (9.4729633E-2)

6 5.02508648E-1 (5.0250864E-1) 4.94002474E-2 (4.9400247E-2) 8.27989974E-2 (8.2798997E-2)

15 0.92394970 (0.92394969) 2.53387344E-2 (2.5338734E-2) 5.61682425E-2 (5.6168242E-2)

30 1.38473104 (1.3847310) 8.09246886E-3 (8.0924688E-3) 4.09208519E-2 (4.0920852E-2)

64 1.66800129 (1.6680013) 3.03560966E-3 (3.0356095E-3) 2.24640902E-2 (2.2464090E-2)

128 1.92106041 (1.9210604) 1.39764804E-3 (1.3976479E-3) 1.25577911E-2 (1.2557791E-2)

256 2.19042635 (2.1904264) 2.06124159E-4 (2.0612502E-4) 7.06846187E-3 (7.0684622E-3)

listed in Spada et al. (2011). It is further noticed from Table 1 that using the benchmark five-layer model (j = 0) directly can already provide
very good results as compared to those in Spada et al. (2011), with a relative error less than 4 per cent. If we consider all LLN values for n
from 1 to 256, the largest absolute difference between our code at step j = 18 and those by Spada et al. (2011) is less than 10−8 (Table 2).
This partially validates that the analytical solutions presented in this paper are accurate since the difference between our solution and the
benchmark is only related to the model approximation on the density and gravity variations.

With this test we showed that the solution built in the previous sections can be successfully applied to the layered incompressible model.
The two approximations that are necessary to obtain the analytic solution for a homogeneous Earth with a density profile of the Darwin’s law
form (eq. 15) and to extend the solution to the layered Earth (decoupling g and ρ) would at most introduce a relative error less than 4 per cent.
Most importantly, we showed that this error can be made arbitrarily small by increasing the density layering and that the solution converges
to the exact one, in contrast to what happens with the Gilbert & Backus solution (Gilbert & Backus 1968; Cambiotti et al. 2009). Since the
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Figure 3. Density distribution in the Earth mantle based on 56 layers featuring 1/r variation in density in each layer versus the PREM model. Inserted is the
corresponding piecewise constant gravity distribution averaged over the calculated gravity in each layer via the Newton’s gravitational law versus that of the
PREM model.

solution is based on the analytic expressions, it can be implemented so that the additional computational cost of this artificial layering is small.
Furthermore, the computation takes the same number of steps (and therefore the same time), independent of the harmonic degree.

The comparison with the benchmark model was therefore crucial to check the approach, and the implementation. Anyway the benchmark
provides a check only for the incompressible models, for which (at least for isotropic material) an analytic solution already exists. In the next
subsection, we will calculate the LLNs for a set of earth models, combining different cores, incompressible, compressible, with isotropic and
transverse isotropic mantles. For some of these models it is also possible to compare the results with those obtained via a numerical code.

6.2 LLNs of various earth models

We now apply the solutions obtained in the previous sections to calculate the LLNs corresponding to the PREM earth model (Dziewonski &
Anderson 1981). In the mantle, we use 56 layers to approximate its density distribution in the PREM model as listed in table I of Dziewonski
& Anderson (1981), that is the polynomial representation, with the uniform elastic properties being just those in the corresponding layer and
the constant gravity being the average of the layer. We further point out that these parameters are valid at a reference period of 1 s and that
for depths from 24.4 to 220 km, the material property is transversely isotropic with their properties being listed in Dziewonski & Anderson
(1981). The elastic constants of eq. (4) are related to those (A, C, L, N, and F) defined in Dziewonski & Anderson (1981) as

A = c11; C = c33; L = c44; N = c66; F = c13. (49)

The top water layer is replaced by an elastic layer with properties similar to the layer below (i.e. Wang et al. 2012). We point out that
while elastic constants A and C are related to the velocities of P waves propagating perpendicular and parallel to the axis of symmetry (i.e. the
radial direction), N and L are related to the shear-wave velocities. Elastic constant F is a function of the velocities at intermediate incidence
angles (Dziewonski & Anderson 1981). Fig. 3 shows the density distribution in the entire mantle based on our 1/r variation using 56 mantle
layers vs the PREM model in terms of polynomial representation. The corresponding comparison on the gravity is also shown in this figure.
We point out that the difference between our 56 layered mantle model and the PREM model for both the density and gravity is at most
0.6 per cent.

For the core of the Earth, we use 26 layers to approximate its gravity variation. For this case, the gravity in each layer is approximated
as g(r) = kr variation with constant density. Fig. 4 shows the gravity distribution in the core based on our kr-variation using 26 layers vs the
PREM model. The corresponding density is also shown in this figure. The maximum difference between our 26 layer core model and the
PREM model for both the density and gravity is again less than 1 per cent.

Based on the mantle and core models along with the core-mantle boundary conditions, we have calculated the LLNs for the following
five earth models. They are

Model 1 is symbolically indicated by 56CT-26C: 56 mantle layers which are Compressible and Transversely isotropic, over 26 core
layers which are Compressible. The transversely isotropic properties exist from 24.4 to 220 km in the mantle with properties being taken
from table IV in PREM model, evaluated at a reference periods of 1 s (Dziewonski & Anderson 1981);

Model 2 is symbolically indicated by 56C-26C: 56 mantle layers which are Compressible and isotropic, over 26 core layers which are
Compressible;

Model 3 is symbolically indicated by 56C-UInc: 56 mantle layers which are Compressible and isotropic, over a Uniform Incompressible
core;
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Figure 4. Gravity distribution in the core using 26-layers featuring linear variation in r versus the PREM model. Inserted is the corresponding piecewise
constant density distribution versus that of the PREM model.

Figure 5. Variation of LLNs –hn for different earth models (from degrees n = 1 to 1000).

Model 4 is symbolically indicated by 56Inc-26Inc: 56 mantle layers which are Incompressible and isotropic, over 26 core layers with
are Incompressible;

Model 5 is symbolically indicated by 56Inc-UInc: 56 mantle layers which are Incompressible and isotropic, over a Uniform
Incompressible core.

For easy future reference, we have listed the model parameters for Models 56CT, 56C, and 26C in Appendix F and have further presented
the solutions for the case of large degree n in Appendix G. The complete list of LLNs for all the five models can be obtained from the first
author at pan2@uakron.edu.

Figs 5–7 show the variation of the LLNs (−hn, nln, and −nkn) from n = 1 to 1000 for the five different earth models with some of the
selected values from n = 1 to 6000 being listed in Tables 3–5 for further reference (including h0). The results for degree n = 1 are based
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Figure 6. Variation of LLNs nln for different earth models (from degrees n = 1 to 1000).

Figure 7. Variation of LLNs –nkn for different earth models (from degrees n = 1 to 1000).

on the center of Earth (CE) system (see Appendix C). We further point out that for the transversely isotropic Earth Model 1 (56CT-26C),
our code can run only to n slightly larger than 2000. However, by running our code for Models 1 and 2, we noticed that, the LLNs are
convergent to each other with increasing n. In other words, the LLNs of the transversely isotropic earth model are nearly the same as those
of the corresponding isotropic Earth Model 2 (56C-26C) for n > 2000. Furthermore, for Models 3 (56C-UInc) and 5 (56Inc-UInc), we have
also listed in parentheses the LLNs from the program E-CL0V3RS v3.5 by Barletta and Bordoni, that has been benchmarked, using the Earth
mantle modes with 56 layers. In using the E-CL0V3RS program, the density in each mantle layer is constant and the gravity is calculated in
each layer exactly via Newton’s gravitational law (17). By comparing our LLNs to those from E-CL0V3RS in Tables 3–5, we observe that
the first two to three digits are exactly the same. This gives a measure of the effect of the assumptions necessary to find the analytic solution
for a 56 layer model. This partially verifies that, since our model parameters (density and gravity) deviate by less than 1 per cent as compared
to the PREM model, the listed LLNs should have a relative error less than 1 per cent.



2166 E. Pan et al.

Table 3. Load Love numbers –hn of different earth models. LLNs in parentheses are calculated from program E-CL0V3RS
v3.5 by Barletta and Bordoni.

n Model 1: 56CT-26C Model 2: 56C-26C Model 3: 56C-UInc Model 4: 56Inc-26Inc Model 5: 56Inc-UInc

0 0.13431 0.13396 0.10811 0.00000 0.00000

1 0.28897 0.28792 0.26673 (0.26613) 0.03298 0.01931 (0.01899)

2 0.99588 0.99522 0.98290 (0.98082) 0.44467 0.44323 (0.44233)

3 1.06143 1.06009 1.05313 (1.05136) 0.45863 0.45722 (0.45651)

4 1.06707 1.06459 1.06200 (1.06043) 0.46523 0.46472 (0.46408)

5 1.10223 1.09857 1.09765 (1.09613) 0.49466 0.49449 (0.49383)

6 1.16177 1.15699 1.15666 (1.15511) 0.53787 0.53781 (0.53710)

8 1.30555 1.29864 1.29860 (1.29690) 0.63679 0.63678 (0.63596)

10 1.44826 1.43923 1.43923 (1.43736) 0.73499 0.73499 (0.73405)

18 1.90898 1.89131 1.89131 (1.88888) 1.06312 1.06312 (1.06177)

32 2.37691 2.34508 2.34508 (2.34208) 1.39577 1.39577 (1.39400)

56 2.72208 2.67414 2.67414 (2.67074) 1.60050 1.60050 (1.59848)

100 3.01388 2.95804 2.95804 (2.95429) 1.71105 1.71105 (1.70889)

180 3.40834 3.35723 3.35723 (3.35299) 1.88664 1.88664 (1.88426)

325 4.08824 4.05323 4.05323 (4.04810) 2.35553 2.35553 (2.35256)

550 4.96895 4.95400 4.95400 (4.94774) 3.10235 3.10235 (3.09844)

1000 5.87847 5.87699 5.87699 (5.86956) 3.97244 3.97244 (3.96742)

2000 6.19356 6.19355 6.19355 (6.18572) 4.30131 4.30131 (4.29587)

3000 − 6.20356 6.20356 (6.19571) 4.31325 4.31325 (4.30779)

4000 − 6.20439 6.20439 (6.19654) 4.31477 4.31477 (4.30932)

5000 − 6.20478 6.20478 (6.19694) 4.31559 4.31559 (4.31013)

6000 − 6.20504 6.20504 (6.19719) 4.31613 4.31613 (4.31067)

Furthermore, the following interesting features can be observed from these tables and figures:

(1) As expected, for a fixed core model, mantle compressibility substantially affects the LLNs (e.g. Tanaka et al. 2011). The property that
has the strongest effect is compressibility: the results fell into two distinct families, one for the compressible and one for the incompressible
mantle. This can be observed by comparing Models 1–3 (56CT-26C, 56C-26C, 56C-UInc) to Models 4–5 (56Inc-26Inc, 56Inc-UInc). More
specifically, an incompressible mantle remarkably reduces the magnitude of LLNs hn (Fig. 5) and even changes the sign of LLNs ln (Fig. 6). As
such, assumption of an incompressible mantle needs to be carefully justified. However, the effect of mantle compressibility on the perturbed
gravity potential is nearly negligible (Fig. 7).

(2) For a given mantle model, the effect of the details of different core modelling (layering, compressibility) is very small. The very simple
uniform incompressible core model yields very similar results as a layered incompressible and layered compressible core models do. The
only obvious difference is for the lower degree LLNs from 1 to 4 (including h0), giving therefore effect only at extremely long wavelength, at
the global level. This substantial independence on the modelling details proves that it is not necessary to invoke very complex core model in
most applications. This further indicates that it is possible to calculate the correct LLNs without much computational efforts. In other words,
for LLNs with lower degrees (n = 1 to 4, including h0), we use the detailed layered core model; but for large degrees n, we can simply use
the equivalent homogeneous incompressible core model.

(3) For the given core model, mantle anisotropy (Model 56CT-26C) affects all the three types of LLNs. More specifically, the PREM
anisotropy increases the amplitude of the LLNs as compared to the corresponding isotropic case (except for a few low-degree LLNs nln).
Furthermore, its influence on nkn and hn is larger than for nln. The difference is small for very low n, and peaks around degree n = 100,
but remains noticeable up to degree n ∼ 1000. After that the LLNs converge to the isotropic ones. This reflects the physics of the problem,
since the anisotropic layers are present in the model only for the depths between 220 and 24.4 km, which corresponds roughly to an interval
of harmonic degree n between 90 and 800. Moreover, we notice that the relative effect (difference in percentage) is different in the three
components of the LLN solution, and this could be very useful in various particular problems to better explain the observables, with respect
to the isotropic case.

7 C O N C LU S I O N S

In this paper, we have presented an analytical solution for the deformation of a transversely isotropic, layered and self-gravitating Earth under
concentrated surface loading. The solution covers both incompressible and compressible mantle and core, and reduces to the solution for the
traditional isotropic mantle when eq. (5) is satisfied. The solution is derived in terms of the vector spherical harmonics with the expansion
coefficients being obtained via the propagator matrix method. We derived the propagator matrices under the assumptions that in each mantle
layer the density varies as 1/r and the gravity is constant, and that in each core layer the gravity is linearly proportional to r with a constant
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Table 4. Load Love numbers nln of different earth models. LLNs in parentheses are calculated from program E-CL0V3RS v3.5
by Barletta and Bordoni. For all five models, l0 = 0.

n Model 1: 56CT-26C Model 2: 56C-26C Model 3: 56C-UInc Model 4: 56Inc-26Inc Model 5: 56Inc-UInc

1 0.10710 0.10789 0.11652 (0.11652) −0.09740 −0.08677 (−0.08647)

2 0.04940 0.05096 0.04608 (0.04590) −0.26289 −0.26449 (−0.26408)

3 0.21121 0.21407 0.20974 (0.20926) −0.22076 −0.22188 (−0.22160)

4 0.23529 0.23903 0.23697 (0.23653) −0.24400 −0.24453 (−0.24421)

5 0.23060 0.23503 0.23421 (0.23383) −0.27731 −0.27752 (−0.27714)

6 0.23069 0.23575 0.23543 (0.23508) −0.30421 −0.30428 (−0.30387)

8 0.25036 0.25657 0.25653 (0.25618) −0.33752 −0.33753 (−0.33708)

10 0.28131 0.28848 0.28847 (0.28809) −0.35277 −0.35278 (−0.35231)

18 0.42879 0.43756 0.43756 (0.43698) −0.32649 −0.32649 (−0.32607)

32 0.64379 0.64993 0.64993 (0.64908) −0.22035 −0.22035 (−0.22008)

56 0.81595 0.81281 0.81281 (0.81175) −0.16198 −0.16198 (−0.16178)

100 0.90690 0.89270 0.89270 (0.89156) −0.24611 −0.24611 (−0.24580)

180 0.92269 0.90118 0.90118 (0.90003) −0.48846 −0.48846 (−0.48785)

325 0.97016 0.94958 0.94958 (0.94837) −0.71101 −0.71101 (−0.71011)

550 1.21738 1.20682 1.20682 (1.20529) −0.62448 −0.62448 (−0.62369)

1000 1.67013 1.66893 1.66893 (1.66682) −0.22774 −0.22774 (−0.22745)

2000 1.88030 1.88031 1.88031 (1.87793) −0.01086 −0.01086 (−0.01085)

3000 − 1.88737 1.88737 (1.88498) −0.00231 −0.00231 (−0.00231)

4000 − 1.88752 1.88752 (1.88513) −0.00162 −0.00162 (−0.00162)

5000 − 1.88753 1.88753 (1.88514) −0.00129 −0.00129 (−0.00129)

6000 − 1.88752 1.88752 (1.88513) −0.00108 −0.00108 (−0.00108)

Table 5. Load Love numbers – nkn of different earth models. LLNs in parentheses are calculated from program E-CL0V3RS
v3.5 by Barletta and Bordoni. For all five models, k0 = 0.

n Model 1: 56CT-26C Model 2: 56C-26C Model 3: 56C-UInc Model 4: 56Inc-26Inc Model 5: 56Inc-UInc

1 0.00000 0.00000 0.00000 (0.00000) 0.00000 0.00000 (0.00000)

2 0.60363 0.60429 0.61288 (0.61178) 0.45550 0.47096 (0.47028)

3 0.58788 0.58829 0.59277 (0.59208) 0.46900 0.47748 (0.47703)

4 0.53814 0.53805 0.54075 (0.54029) 0.46452 0.46887 (0.46853)

5 0.52981 0.52923 0.53049 (0.53011) 0.48451 0.48640 (0.48610)

6 0.55041 0.54937 0.54987 (0.54952) 0.51961 0.52035 (0.52005)

8 0.62413 0.62216 0.62223 (0.62187) 0.60337 0.60347 (0.60314)

10 0.70583 0.70286 0.70287 (0.70247) 0.68671 0.68672 (0.68635)

18 0.98821 0.98042 0.98042 (0.97987) 0.96279 0.96279 (0.96226)

32 1.27581 1.25853 1.25853 (1.25785) 1.23858 1.23858 (1.23792)

56 1.44304 1.41341 1.41341 (1.41267) 1.39449 1.39449 (1.39376)

100 1.50153 1.46460 1.46460 (1.46385) 1.44509 1.44509 (1.44436)

180 1.56024 1.52598 1.52598 (1.52522) 1.50791 1.50791 (1.50715)

325 1.80330 1.78011 1.78011 (1.77926) 1.76420 1.76420 (1.76335)

550 2.26792 2.25806 2.25806 (2.25710) 2.23564 2.23564 (2.23469)

1000 2.83225 2.83126 2.83126 (2.83032) 2.81647 2.81647 (2.81554)

2000 3.04399 3.04399 3.04399 (3.04307) 3.04219 3.04219 (3.04127)

3000 − 3.05191 3.05191 (3.05075) 3.05099 3.05099 (3.04984)

4000 − 3.05309 3.05309 (3.05173) 3.05241 3.05241 (3.05105)

5000 − 3.05375 3.05375 (3.05224) 3.05321 3.05321 (3.05170)

6000 − 3.05418 3.05418 (3.05258) 3.05372 3.05372 (3.05213)

density. Under these assumptions it is possible to combine the analytic solutions for each layer into a solution for the layered Earth. This
‘Darwin law’ assumption for the density profile in the mantle, and especially the necessary decoupling of the density and gravity inside each
layer, has an effect on the global solution, which we measured by comparing the results obtained based on our MATLAB implementation
with the LLNs from Spada et al. (2011). As we showed, the effect of the approximation is small but not negligible (about 4 per cent) for
the benchmark incompressible model, which is anyway a worst case scenario for the comparison, as it consists only 5 thick uniform layers.
However, with a finer density-layering structure we obtain a solution that converges to the exact result. This method allows us to compute
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efficiently the LLNs for models where both the mantle and core can be uniform or layered, compressible and incompressible, with isotropic
or transversely isotropic mantle structure. Transverse isotropy is a special form of material anisotropy that is present in the mantle according
to the PREM specifications.

We applied the method to a set of previously-adopted earth models. Here we used a simple PREM-based layering that gives an estimated
discrepancy with respect to the correct PREM results, much below 1 per cent as shown in the paper. Furthermore, whenever possible, we
compared our results with those obtained via a benchmarked numerical software (E-CL0V3RS). Our calculation and comparison of the LLNs
showed the following interesting features for the PREM earth models:

(1) The surface LLNs are almost insensitive to the details of the core model, apart from the very low degrees. This means that for a given
mantle structure, a uniform incompressible core model yields very similar results as a layered incompressible core or a layered compressible
core model does when the degree is larger than 4. Therefore both refined layering and compressibility in the core play a minor role and
may only be useful in a very global spatial scale. This result is expected because the sensitivity of the solution to a specific layer at given
wavelength depends on the depth of the layer, and most local and regional phenomena are insensitive to the lower mantle structure.

(2) The property that has the largest effect on the LLN is, as expected (Tanaka et al. 2011), the compressibility in the mantle. All the
models fall into two clear families. An incompressible mantle remarkably reduces the magnitude and even changes the sign of many LLNs.

(3) We also investigate the effect of mantle material transverse isotropy on the LLNs. For the given core model, this specific mantle
anisotropy affects all the three types of LLNs with a small but measurable effect for all degrees to n ∼ 1000. For the PREM model, the
difference of the LLNs between anisotropic and isotropic cases is not uniform, but peaks around degree n = 100. More specifically, the
PREM anisotropy increases the amplitude of the LLNs as compared to the corresponding isotropic case (expect for a few low-degree nln)
and its influence on nkn and hn seems larger than for nln. This suggests that mantle material anisotropy could give a significant contribution,
especially in local applications, when deviation from the average isotropic PREM model is significant, especially in the shallower layer.
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A P P E N D I X A : S P H E R I C A L H A R M O N I C F U N C T I O N A N D T H E
C O R R E S P O N D I N G V S H

We present the spherical harmonic function and the corresponding VSH in this appendix as reference. The spherical harmonic function and
the associated Legendre function are well-known but people are using them with different definitions and different normalization factors. In
this paper and in the VSH eq. (7), the normalized spherical harmonic function S is defined by

S(θ, φ; n, m) =
√

(2n + 1)(n − m)!

4π (n + m)!
Pm

n (cos θ )eimφ |m| ≤ n; n = 0, 1, 2, . . . (A1)

The associated Legendre function Pm
n in eq. (A1) is defined as

Pm
n (x) = (−1)m(1 − x2)m/2 dm

dxm
Pn(x); (m ≥ 0), (A2)

where Pn is the Legendre function of nth degree. Eq. (A2) holds for any positive m; when this index is negative, the associated function is
defined in terms of its positive one as

P−m
n (cos θ ) = (−1)m (n − m)!

(n + m)!
Pm

n (cos θ ); (m ≥ 0). (A3)

In so doing, one can define

S(θ, φ; n, −m) = (−1)m S̄(θ, φ; n, m), (A4)

where an overbar denotes complex conjugate, giving as

S̄(θ, φ; n, m) =
√

(2n + 1)(n − m)!

4π (n + m)!
Pm

n (cos θ )e−imφ |m| ≤ n; n = 0, 1, 2, . . . . (A5)

It is noted that the scalar function S satisfies the following Helmholtz equation

∂2 S

∂θ 2
+ cot θ

∂S

∂θ
+ 1

sin2θ

∂2 S

∂φ2
+ n(n + 1)S = 0. (A6)

It is easy to show that the VSH (7) are complete and orthogonal in the following sense.∫ 2π

0
dφ

∫ π

0
L(θ, φ; n, m)·L̄(θ, φ; n′, m ′) sin θdθ = δnn′δmm′

∫ 2π

0
dφ

∫ π

0
M(θ, φ; n, m)·M̄(θ, φ; n′, m ′) sin θdθ = n(n + 1)δnn′δmm′

∫ 2π

0
dφ

∫ π

0
N(θ, φ; n, m)·N̄(θ, φ; n′, m ′) sin θdθ = n(n + 1)δnn′δmm′ , (A7)

where a dot means scalar product. The expansion coefficients can be found, for instance, for the scalar function ψ and the elastic displacement
vector u, as

�(r ; n, m) =
∫ 2π

0
dφ

∫ π

0
sin θdθ [ψ(r, θ, φ)S̄(θ, φ)]

UL (r ; n, m) =
∫ 2π

0
dφ

∫ π

0
sin θdθ [u(r, θ, φ) · L̄(θ, φ)]

UM (r ; n, m) = 1

n(n + 1)

∫ 2π

0
dφ

∫ π

0
sin θdθ [u(r, θ, φ) · M̄(θ, φ)]

UN (r ; n, m) = 1

n(n + 1)

∫ 2π

0
dφ

∫ π

0
sin θdθ [u(r, θ, φ) · N̄(θ, φ)]. (A8)



2170 E. Pan et al.

A P P E N D I X B : M AT R I C E S A N D T H E I R E L E M E N T S I N E Q. ( 2 0 b )

First, eq. (18) can be ordered as

[T ] = 1

r
[R1][U] + [R2]∂r [U] (B1)

∂r [T ] = 1

r
[R3][T ] + 1

r 2
[R4][U] + 1

r
[R5]∂r [U], (B2)

where

[R1] =

⎡
⎢⎢⎣

2c13 −n(n + 1)c13 0

c44 −c44 0

4πGρ̄r̄ 0 n + 1

⎤
⎥⎥⎦ ; [R2] =

⎡
⎢⎢⎣

c33 0 0

0 c44 0

0 0 1

⎤
⎥⎥⎦ (B3)

[R3] =

⎡
⎢⎢⎣

−2 n(n + 1) 0

0 −3 0

0 0 0

⎤
⎥⎥⎦ ; [R5] =

⎡
⎢⎢⎣

2c13 0 ρ̄r̄

−c13 0 0

0 0 n − 1

⎤
⎥⎥⎦

[R4] =

⎡
⎢⎢⎢⎣

2(c11 + c12) − 4gρ̄r̄ + 4πG(ρ̄r̄ )2 n(n + 1)gρ̄r̄ − (c11 + c12)n(n + 1) 0

gρ̄r̄ − (c11 + c12) c12n(n + 1) − 2c66[1 − n(n + 1)] ρ̄r̄

−8πGρ̄r̄ 4πGρ̄ ¯rn(n + 1) (n + 1)(n − 1)

⎤
⎥⎥⎥⎦ .

(B4)

For the given layer, we introduce the variable transformation as defined by eq. (19). Then, in terms of the new variable ξ , eqs (B1) and (B2)
can be recast into

r (ξ )[T ] = [R1][U] + [R2]∂ξ [U] (B5)

r (ξ )∂ξ [T ] = r (ξ )[R3][T ] + [R4][U] + [R5]∂ξ [U]. (B6)

Eqs (B5) and (B6) can be combined and presented in the following enlarged matrix form[
R2 0

−R5 I

][
U′

rT′

]
=

[
−R1 I

R4 R3

] [
U

rT

]
, (B7)

where the superscript prime denotes derivative with respect to ξ .

A P P E N D I X C : T H E P E RT U R B E D P O T E N T I A L A N D L OA D L OV E N U M B E R S

C1. Boundary conditions of the traction and the perturbed gravitational potential

We introduce the total potential � as

� = ψ0 + ψ, (C1)

where ψ0 is the potential before the perturbation, and therefore it satisfies the following governing equations and boundary conditions

ψ0,kk ≡ ∂2
r ψ0 + 2

r
∂rψ0 =

{
−4πGρ(r ) r < a

0 r > a
(C2)

ψ
(i)
0 = ψ

(e)
0 ; ∂rψ

(i)
0 = ∂rψ

(e)
0 ; r = a, (C3)

where the superscripts (i) and (e) denote the internal (r < a) and external (r > a) quantities.On the deformed surface r = a + ur(a), we then
have

� (i)(a + ur ) = � (e)(a + ur ); ∂r�
(i)(a + ur ) − ∂r�

(e)(a + ur ) = −4πGγ, (C4)

where γ (say = ρwhw with ρw being the ocean (water) density and hw the ocean height of the water) is the mass applied on the surface of the
Earth.
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Making use of eqs (C1)–(C3) and in terms of the perturbed potential ψ , we have the following boundary conditions (by keeping only
the first-degree small variables)

ψ (i)(a) = ψ (e)(a); ∂rψ
(i)(a) − ∂rψ

(e)(a) = −4πG(ρur + γ ). (C5)

Now the perturbed gravitational potential ψ can be expressed in general as the summation of the following two terms:

ψ = ψd + ψl , (C6)

where the subscripts d and l denote the deformation-perturbed potential and load potential (the potential related to the applied load).

C2. Deformation-related perturbed potential ψd

It is obvious that ψd should satisfy the following governing equations

ψd, j j =
{

−4πG(ρu j, j + ρ,r ur ); r < a

0; r > a
(C7)

and the condition on the surface of the Earth r = a

ψ
(i)
d = ψ

(e)
d ; ∂rψ

(i)
d − ∂rψ

(e)
d = −4πGρur . (C8)

From now on, our analysis will be restricted to the nth term of the spherical surface function S (i.e. any time n appears, it means the
relation for the nth term). We notice that in r > a, ψd should satisfy the Laplace equation (the second expression in C7), that is it should be
harmonic. Therefore, on the surface r = a, we have the following relation.

∂rψ
(e)
d = −n + 1

a
ψ

(e)
d . (C9)

Thus, the second expression in (C8) becomes (r = a)

∂rψ
(i)
d + n + 1

a
ψ

(i)
d = −4πGρur . (C10)

The right-hand side is also understood as the nth term of the radial displacement ur. Using the relations among different potentials in eq.
(C6), eq. (C10) becomes (r = a)

∂rψ
(i) + n + 1

a
ψ (i) = −4πGρur + 2n + 1

a
ψl . (C11)

On the right-hand side of eq. (C11), the load potential can be either from inside or outside of the Earth since it is continuous at r = a.
Furthermore, it is noted that the nth term of ψ l is proportional to Sn as

ψl ∝ rn

an
Sn, (C12)

where Sn= S(θ , φ; n, m) is the nth spherical function. Therefore, in terms of the expansion coefficients, eq. (C11) can be finally expressed on
the surface r = a as

Q(a) = 2n + 1

a
ψl . (C13)

The right-hand side is understood as the expansion coefficient of the nth term.
Therefore, for the surface loading case, the traction and potential flux boundary conditions on the surface of r = a become (their

expansion coefficients)

TL (a) = −gaγ ; TM (a) = 0; Q(a) = 2n + 1

a
ψl . (C14)
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Using the mass expansion coefficients, we have

TL (a) = −gaCm
n ; TM (a) = 0; Q(a) = −4πGCm

n , (C15)

where we have assumed that the scalar mass γ can be expanded as (the expansion coefficients should be also a function of time t)

γ (θ, φ) =
∞∑

n=0

n∑
m=−n

Cm
n S(θ, φ). (C16)

The load-related perturbed potential ψ l can be expanded as

ψl (r, θ, φ) =

⎧⎪⎪⎨
⎪⎪⎩

N∑
n=0

n∑
m=−n

Am
n

rn

an S(θ, φ); r < a

N∑
n=0

n∑
m=−n

Am
n

an+1

rn+1 S(θ, φ); r > a
, (C17)

where it can be shown that

Am
n = −4πGa

2n + 1
Cm

n . (C18)

Or

ψl (r, θ, φ) = −

⎧⎪⎪⎨
⎪⎪⎩

N∑
n=0

n∑
m=−n

4πGa
2n+1 Cm

n
rn

an S(θ, φ); r < a

N∑
n=0

n∑
m=−n

4πGa
2n+1 Cm

n
an+1

rn+1 S(θ, φ); r > a
. (C19)

We now briefly derive the relation eq. (C18):
First, the load-related perturbed potential ψ l should satisfy{

∂ j∂ jψ
(i)
l = 0; r < a

∂ j∂ jψ
(e)
l = 0; r > a

(C20)

with its solutions being

ψ (i)
s (r, θ, φ) =

N∑
n=0

n∑
m=−n

Am
n

rn

an
S(θ, φ); r < a

ψ (e)
s (r, θ, φ) =

N∑
n=0

n∑
m=−n

Am
n

an+1

rn+1
S(θ, φ); r > a. (C21)

At r = a, the following conditions should be satisfied

ψ (i)
s = ψ (e)

s ; ∂rψ
(i)
s − ∂rψ

(e)
s = −4πGγ. (C22)

Then, substituting eqs (C16) and (C21) into eq. (C22) gives eq. (C18).

C3. Definition of LLNs

The three load Love numbers LLNs (hn, ln, kn) on the surface of the Earth r = a can be defined as (for the physical quantities proportional to
the magnitude of the nth term of the harmonic surface load potential ψ l)

ur (a, θ, φ) = hn

ga
ψl

uθ (a, θ, φ) = ln

ga
∂θψl

ψd (a, θ, φ) = knψl . (C23)
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It is easy to see that (in terms of the magnitude of the expansion coefficients of ψ l)

hn = (2n + 1)UL (a)ga/(4πGCm
n );

ln = (2n + 1)UM (a)ga/(4πGCm
n );

kn = −[(2n + 1)�(a)ga/(4πGCm
n ) + 1]. (C24)

C4. Solutions and LLNs for degree n = 1

It is well known (Farrell 1972; Saito 1974; Pan et al. 1986) that when n = 1, there is a rigid-body motion solution in eq. (13) and this solution
can be expressed as (with superscript r being rigid motion)

Ur = [ 1 1 g ]t ; Tr = 0 . (C25)

Following Farrell (1972), we let any one of the coefficients ci in eq. (38), say, c3 = 0, and then propagate the solution matrices to the
surface to satisfy any two of the three boundary conditions in eq. (38). We name the solution thus found as Uc and Tc, and notice that it
contains a rigid-body motion of the center of the Earth after loading. Since eq. (C25) is also a solution, it is obvious that the following
expression also constitutes a new solution to the problem (with α being a coefficient to be determined)

U = U c + αU r ; T = T c + αT r . (C26)

This equation actually provides us a condition to constrain the center of the Earth. If we assume that the deformed center of the Earth
(CE) is fixed in the space, we then find that

α = −�c(a)/g. (C27)

The new LLNs are then obtained as

h1 = hc
1 − kc

1; l1 = lc
1 − kc

1; k1 = 0, (C28)

where the LLNs with superscript ‘c’ are those calculated based on the solution Uc and Tc. We further point out that the LLNs with superscript
‘c’ in eq. (C28) are actually those based on the centre of mass (CM) reference system.

A P P E N D I X D : A NA LY T I C A L S O LU T I O N S F O R D E G R E E n = 0

When n = 0, we have only the spherical symmetric deformation. In other words, the solution depends only on the radial coordinate r. As such,
the N-type and M-type coefficients should be all zero, and we are thus left with only the L-type expansion coefficients. For the governing
equations without body force, we have in the mantle,

U ′
L = −2c13

c33

UL

r
+ TL

c33

�′ = −4πGρUL − 1

r
� + Q

T ′
L = −4ρgUL

r
+ 2[c33(c11 + c12) − 2c2

13]UL

c33r 2
+ 2

r

(
c13

c33
− 1

)
TL − 1

r
ρ� + ρQ

Q ′ = −4πGρ
UL

r
− 1

r
Q. (D1)

From the second and fourth expressions, we have

�′

r
+ 1

r 2
� = Q ′ + 2

r
Q. (D2)

A solution of which is

Q = 1

r
�. (D3)
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Eq. (D1) is therefore changed to

U ′
L = −2c13

c33

UL

r
+ TL

c33

T ′
L = −4ρgUL

r
+ 2[c33(c11 + c12) − 2c2

13]UL

c33r 2
+ 2

r

(
c13

c33
− 1

)
TL

�′ = −4πGρUL . (D4)

Eq. (D4) indicates that the elastic spherical deformation is uncoupled from the perturbed gravitational potential and, therefore, can be
solved independent of it. In other words, for degree n = 0, we need only to solve UL and TL using the first two expressions in eq. (D4),
subjected to the following interface continuity conditions.

[UL ]+− = 0; [TL ]+− = 0. (D5)

Making use of the density assumption of 1/r in eq. (15), the first two expressions in eq. (D4) can be written as

U ′
L = −2c13

c33

UL

r
+ TL

c33

T ′
L = −4ρ̄r̄ gUL

r 2
+ 2[c33(c11 + c12) − 2c2

13]UL

c33r 2
+ 2

r

(
c13

c33
− 1

)
TL . (D6)

Eq. (D6) can be further written as

U ′
L = b11

UL

r
+ b12TL

T ′
L = b21

UL

r 2
+ b22

TL

r
(D7)

with the coefficients bij being

b11 = −2c13/c33; b12 = 1/c33; b22 = 2(c13/c33 − 1)

b21 = −4ρ̄r̄ g + 2[c33(c11 + c12) − 2c2
13]/c33, (D8)

where the isotropic case can be reduced by using eq. (5).
Making use of the exponential variable transformation as defined by eq. (19), we can change eq. (D7) to[

U ′
L

rT ′
L

]
=

[
b11 b12

b21 b22

] [
UL

rTL

]
, (D9)

where the prime denotes the derivative with respect to variable ξ .
In terms of the exponential matrix, the general solution of eq. (D9) in the given layer at ξ can be expressed in terms of its solution at

ξ = 0 as[
UL (ξ )

r (ξ )TL (ξ )

]
= exp (Aξ )

[
UL (0)

r (ξ )TL (0)

]
, (D10)

where matrix [A] is related to bij as

[A] =
[

b11 b12

b21 b22 + 1

]
. (D11)

Relation (D10) can be propagated, in the mantle, from the core-mantle boundary r = rc to the surface at r = a to obtain[
UL (ξp)

aTL (ξp)

]∣∣∣∣∣r=a = exp
(

Apξp

)
exp

(
Ap−1ξp−1

) · · · exp (A1ξ1)

[
UL (ξ )

rcTL (ξ )

]∣∣∣∣∣ r=rc , (D12)

where matrix [Ai] is related to the material properties in layer i as defined in eq. (D11).
In the core (r < rc) which is isotropic with μ = 0, the first two expressions in eq. (D4) are reduced to

U ′
L = −2UL

r
+ 1

λ
TL ; T ′

L = −4ρgUL

r
. (D13)
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Same as for the other degree n, we assume that the gravity in each layer of the core are linear, that is g = kr, and that the density is
constant. Then we can rewrite eq. (D13) as

U ′
L = −2UL

r
+ TL

λ
; T ′

L = −4ρkUL . (D14)

The general solution of eq. (D14) can be expressed as

[
UL

rTL

]
= [B]

[
c1

c2

]
(D15)

with the solution matrix [B] being

[B(pr )] =
[

j1(pr ) y1(pr )

λ[pr j ′
1(pr ) + 2 j1(pr )] λ[pr y′

1(pr ) + 2y1(pr )]

]
. (D16)

In eq. (D16), the prime denotes derivative with respect to the combined variable (pr), not with respect to r, and

p =
√

4ρk/λ. (D17)

Also in eq. (D16), j1 and y1 are the spherical Bessel functions of the first and second kinds.
As we pointed out in Section 4, instead of assuming g = kr in each layer, one could assume that the density varies as 1/r in each layer.

This will also lead us to the analytical solution associated with degree n = 0.
From the general solution eq. (D15), we have the following propagating relation between the upper and lower interfaces of layer i, as

[
UL

ri TL

]
= [ac

i ]

[
UL

ri−1TL

]
, (D18)

where

[ac
i ] = [B(pri )][B(pri−1)]−1. (D19)

Thus, the propagating relation (D18) can be propagated from one layer to the next. What we need now is just the starting solution of
eq. (D13) in the innermost core when r is very small. Since at the centre r = 0, we have g = 0 and ρ = constant, we have, near the centre,

λU ′
L = −2λUL

r
+ TL ; T ′

L = 0 (D20)

which has a general solution when r ≤ r0 as

[
UL

rTL

]
=

[
r

3λr

]
c. (D21)

We therefore can propagate the solution from r = r0 all the way to the surface at r = a to obtain

[
UL (ξp)

aTL (ξp)

]
|r=a = exp

(
Apξp

)
exp

(
Ap−1ξp−1

) · · · [ac
m][ac

m−1] · · · [ac
1]

[
r0

3λr0

]
c. (D22)

Then, applying the surface condition

TL (a) = −gaC0
0 (D23)

to the second expression in eq. (D22), we can solve for the unknown constant c; substituting back to the first expression in eq. (D22), we find
UL(a), and thus the only nonzero LLN for degree n = 0 as

h0 = UL (a)ga/(4πGC0
0 ). (D24)

We point out that, for the incompressible mantle and core models (i.e. Model 4 with 56Inc-26Inc and Model 5 with 56Inc-UInc), the
solutions of UL and TL in each layer are zero and therefore, the LLN h0 = 0 (Longman 1963; Farrell 1972; Pan et al. 1986). For other models
discussed in this paper, we have h0 = −0.13431 for the transversely isotropic Model 1 (56CT-26C), h0 = −0.13396 for the isotropic Model 2
(56C-26C), and h0 = −0.10811 for the isotropic Model 3 (56C-UInc).
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A P P E N D I X E : B E N C H M A R K M O D E L O F S PA DA E T A L . ( 2 0 1 1 )

Table E1. Benchmark model of Spada et al. (2011).

Layer # Radius ri (m) Density (kg m–3) μ (Pa) Gravity (m s–2)

5 6 371 000 3037 5.0605E10 9.83479662
4 6 301 000 3438 7.0363E10 9.90985890
3 5 951 000 3871 1.0549E11 9.99820846
2 5 701 000 4978 2.2834E11 9.81493357
1 3 480 000 10 750 2.2834E11 10.45700000

Notes. The gravity in our model is the average in the layer calculated using eq. (17) with the input density
satisfying eq. (15). Therefore, while Spada et al. (2011) used constant density and varying gravity from
the Newton’s law, we used 1/r-density variation as described by eq. (15) and constant gravity which is the
average in the layer calculated using eq. (17).

A P P E N D I X F : P R E M M O D E L S O F L AY E R E D M A N T L E A N D C O R E

Table F1. Mantle Model TI56 (layered compressible and transversely isotropic mantle).

Layer # Radius ri (m) Density (kg m–3) A (Pa) C (Pa) L (Pa) N (Pa) F (Pa) Gravity (m s–2)

57 6 371 000 2600 8.746667E10 8.746667E10 2.660000E10 2.660000E10 3.426667E10 9.8156
56 6 369 000 2600 8.750000E10 8.750000E10 2.660000E10 2.660000E10 3.430000E10 9.8222
55 6 356 000 2900 1.341000E11 1.341000E11 4.410000E10 4.410000E10 4.590000E10 9.8332
54 6 346 600 3380 2.268000E11 2.176000E11 6.530000E10 7.190000E10 8.660000E10 9.8394
53 6 331 000 3378 2.260000E11 2.165000E11 6.540000E10 7.140000E10 8.630000E10 9.8437
52 6 311 000 3376 2.251000E11 2.151000E11 6.550000E10 7.080000E10 8.600000E10 9.8493
51 6 291 000 3372 2.237714E11 2.132000E11 6.564286E10 6.994286E10 8.557143E10 9.8553
50 6 256 000 3369 2.221429E11 2.108857E11 6.581429E10 6.894286E10 8.502857E10 9.8664
49 6 221 000 3365 2.205286E11 2.085857E11 6.598571E10 6.798571E10 8.435714E10 9.8783
48 6 186 000 3356 2.189857E11 2.063000E11 6.615714E10 6.695714E10 8.367143E10 9.8911
47 6 151 000 3449 2.517000E11 2.517000E11 7.410000E10 7.410000E10 1.035000E11 9.9048
46 6 106 000 3476 2.588333E11 2.588333E11 7.570000E10 7.570000E10 1.074333E11 9.9203
45 6 061 000 3503 2.660667E11 2.660667E11 7.730000E10 7.730000E10 1.114667E11 9.9361
44 6 016 000 3530 2.735333E11 2.735333E11 7.900000E10 7.900000E10 1.155333E11 9.9522
43 5 971 000 3755 3.107000E11 3.107000E11 9.060000E10 9.060000E10 1.295000E11 9.9686
42 5 921 000 3818 3.339667E11 3.339667E11 9.770000E10 9.770000E10 1.385667E11 9.979
41 5 871 000 3881 3.582333E11 3.582333E11 1.051000E11 1.051000E11 1.480333E11 9.9883
40 5 821 000 3944 3.836000E11 3.836000E11 1.128000E11 1.128000E11 1.580000E11 9.9965
39 5 771 000 3980 4.102333E11 4.102333E11 1.210000E11 1.210000E11 1.682333E11 10.0038
38 5 736 000 3988 4.155000E11 4.155000E11 1.224000E11 1.224000E11 1.707000E11 10.0088
37 5 701 000 4397 5.063000E11 5.063000E11 1.548000E11 1.548000E11 1.967000E11 10.0143
36 5 650 000 4428 5.252333E11 5.252333E11 1.639000E11 1.639000E11 1.974333E11 10.0063
35 5 600 000 4474 5.439667E11 5.439667E11 1.730000E11 1.730000E11 1.979667E11 9.9985
34 5 500 000 4534 5.695000E11 5.695000E11 1.794000E11 1.794000E11 2.107000E11 9.9836
33 5 400 000 4592 5.945667E11 5.945667E11 1.856000E11 1.856000E11 2.233667E11 9.9698
32 5 300 000 4650 6.195333E11 6.195333E11 1.918000E11 1.918000E11 2.359333E11 9.9573
31 5 200 000 4707 6.441667E11 6.441667E11 1.979000E11 1.979000E11 2.483667E11 9.9467
30 5 100 000 4762 6.684667E11 6.684667E11 2.039000E11 2.039000E11 2.606667E11 9.9383
29 5 000 000 4817 6.925333E11 6.925333E11 2.098000E11 2.098000E11 2.729333E11 9.9326
28 4 900 000 4871 7.164000E11 7.164000E11 2.157000E11 2.157000E11 2.850000E11 9.9301
27 4 800 000 4924 7.401333E11 7.401333E11 2.215000E11 2.215000E11 2.971333E11 9.9314
26 4 700 000 4964 7.637667E11 7.637667E11 2.273000E11 2.273000E11 3.091667E11 9.9369
25 4 650 000 4990 7.637667E11 7.637667E11 2.273000E11 2.273000E11 3.091667E11 9.9369
24 4 600 000 5022 7.874000E11 7.874000E11 2.331000E11 2.331000E11 3.212000E11 9.9474
23 4 550 000 5042 7.874000E11 7.874000E11 2.331000E11 2.331000E11 3.212000E11 9.9474
22 4 500 000 5068 8.109000E11 8.109000E11 2.388000E11 2.388000E11 3.333000E11 9.9635
21 4 450 000 5093 8.109000E11 8.109000E11 2.388000E11 2.388000E11 3.333000E11 9.9635
20 4 400 000 5119 8.345000E11 8.345000E11 2.445000E11 2.445000E11 3.455000E11 9.9859
19 4 350 000 5144 8.345000E11 8.345000E11 2.445000E11 2.445000E11 3.455000E11 9.9859
18 4 300 000 5169 8.582000E11 8.582000E11 2.502000E11 2.502000E11 3.578000E11 10.0156
17 4 250 000 5195 8.582000E11 8.582000E11 2.502000E11 2.502000E11 3.578000E11 10.0156
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Table F1 Continued.

Layer # Radius ri (m) Density (kg m–3) A (Pa) C (Pa) L (Pa) N (Pa) F (Pa) Gravity (m s–2)

16 4 200 000 5220 8.821000E11 8.821000E11 2.559000E11 2.559000E11 3.703000E11 10.0535
15 4 150 000 5245 8.821000E11 8.821000E11 2.559000E11 2.559000E11 3.703000E11 10.0535
14 4 100 000 5270 9.064333E11 9.064333E11 2.617000E11 2.617000E11 3.830333E11 10.1006
13 4 050 000 5295 9.064333E11 9.064333E11 2.617000E11 2.617000E11 3.830333E11 10.1006
12 4 000 000 5320 9.310667E11 9.310667E11 2.675000E11 2.675000E11 3.960667E11 10.158
11 3 950 000 5345 9.310667E11 9.310667E11 2.675000E11 2.675000E11 3.960667E11 10.158
10 3 900 000 5370 9.562333E11 9.562333E11 2.734000E11 2.734000E11 4.094333E11 10.2272
9 3 850 000 5394 9.562333E11 9.562333E11 2.734000E11 2.734000E11 4.094333E11 10.2272
8 3 800 000 5419 9.820333E11 9.820333E11 2.794000E11 2.794000E11 4.232333E11 10.3095
7 3 750 000 5444 9.820333E11 9.820333E11 2.794000E11 2.794000E11 4.232333E11 10.3095
6 3 700 000 5474 1.008567E12 1.008567E12 2.855000E11 2.855000E11 4.375667E11 10.4066
5 3 630 000 5499 1.027733E12 1.027733E12 2.899000E11 2.899000E11 4.479333E11 10.4844
4 3 600 000 5519 1.031600E12 1.031600E12 2.907000E11 2.907000E11 4.502000E11 10.5204
3 3 550 000 5544 1.031600E12 1.031600E12 2.907000E11 2.907000E11 4.502000E11 10.5204
2 3 500 000 5561 1.044767E12 1.044767E12 2.933000E11 2.933000E11 4.581667E11 10.6532
1 3 480 000 10932 9.420000E11 9.420000E11 0.000000E00 0.000000E00 9.420000E11 10.6823

Table F2. Mantle Model 56 (layered compressible and isotropic mantle).

Layer # Radius ri (m) Density (kg m−3) μ (Pa) λ (Pa) Gravity (m s−2)

57 6 371 000 2600 2.660000E10 3.426667E10 9.8156
56 6 369 000 2600 2.660000E10 3.430000E10 9.8222
55 6 356 000 2900 4.410000E10 4.590000E10 9.8332
54 6 346 600 3380 6.820000E10 8.603333E10 9.8394
53 6 331 000 3378 6.800000E10 8.576667E10 9.8437
52 6 311 000 3376 6.770000E10 8.556667E10 9.8493
51 6 291 000 3372 6.740000E10 8.536667E10 9.8553
50 6 256 000 3369 6.690000E10 8.490000E10 9.8664
49 6 221 000 3365 6.650000E10 8.436667E10 9.8783
48 6 186 000 3356 6.600000E10 8.380000E10 9.8911
47 6 151 000 3449 7.410000E10 1.035000E11 9.9048
46 6 106 000 3476 7.570000E10 1.074333E11 9.9203
45 6 061 000 3503 7.730000E10 1.114667E11 9.9361
44 6 016 000 3530 7.900000E10 1.155333E11 9.9522
43 5 971 000 3755 9.060000E10 1.295000E11 9.9686
42 5 921 000 3818 9.770000E10 1.385667E11 9.979
41 5 871 000 3881 1.051000E11 1.480333E11 9.9883
40 5 821 000 3944 1.128000E11 1.580000E11 9.9965
39 5 771 000 3980 1.210000E11 1.682333E11 10.0038
38 5 736 000 3988 1.224000E11 1.707000E11 10.0088
37 5 701 000 4397 1.548000E11 1.967000E11 10.0143
36 5 650 000 4428 1.639000E11 1.974333E11 10.0063
35 5 600 000 4474 1.730000E11 1.979667E11 9.9985
34 5 500 000 4534 1.794000E11 2.107000E11 9.9836
33 5 400 000 4592 1.856000E11 2.233667E11 9.9698
32 5 300 000 4650 1.918000E11 2.359333E11 9.9573
31 5 200 000 4707 1.979000E11 2.483667E11 9.9467
30 5 100 000 4762 2.039000E11 2.606667E11 9.9383
29 5 000 000 4817 2.098000E11 2.729333E11 9.9326
28 4 900 000 4871 2.157000E11 2.850000E11 9.9301
27 4 800 000 4924 2.215000E11 2.971333E11 9.9314
26 4 700 000 4964 2.273000E11 3.091667E11 9.9369
25 4 650 000 4990 2.273000E11 3.091667E11 9.9369
24 4 600 000 5022 2.331000E11 3.212000E11 9.9474
23 4 550 000 5042 2.331000E11 3.212000E11 9.9474
22 4 500 000 5068 2.388000E11 3.333000E11 9.9635
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Table F2 Continued.

Layer # Radius ri (m) Density (kg m-3) μ (Pa) λ (Pa) Gravity (m s−2)

21 4 450 000 5093 2.388000E11 3.333000E11 9.9635
20 4 400 000 5119 2.445000E11 3.455000E11 9.9859
19 4 350 000 5144 2.445000E11 3.455000E11 9.9859
18 4 300 000 5169 2.502000E11 3.578000E11 10.0156
17 4 250 000 5195 2.502000E11 3.578000E11 10.0156
16 4 200 000 5220 2.559000E11 3.703000E11 10.0535
15 4 150 000 5245 2.559000E11 3.703000E11 10.0535
14 4 100 000 5270 2.617000E11 3.830333E11 10.1006
13 4 050 000 5295 2.617000E11 3.830333E11 10.1006
12 4 000 000 5320 2.675000E11 3.960667E11 10.158
11 3 950 000 5345 2.675000E11 3.960667E11 10.158
10 3 900 000 5370 2.734000E11 4.094333E11 10.2272
9 3 850 000 5394 2.734000E11 4.094333E11 10.2272
8 3 800 000 5419 2.794000E11 4.232333E11 10.3095
7 3 750 000 5444 2.794000E11 4.232333E11 10.3095
6 3 700 000 5474 2.855000E11 4.375667E11 10.4066
5 3 630 000 5499 2.899000E11 4.479333E11 10.4844
4 3 600 000 5519 2.907000E11 4.502000E11 10.5204
3 3 550 000 5544 2.907000E11 4.502000E11 10.5204
2 3 500 000 5561 2.933000E11 4.581667E11 10.6532
1 3 480 000 10932 0.000000E00 9.422500E11 10.6823

Table F3. Core Model 26 (layered compressible core).

Layer # Radius ri (m) Density (kg m−3) λ (Pa) μ (Pa) k = g/r (1 s−2)

1 300 000 13082 1.4203E12 0 3.657114E-6
2 600 000 13042.8 1.4053E12 0 3.647526E-6
3 900 000 12964.4 1.3805E12 0 3.631139E-6
4 1 221 500 12841.6 1.3434E12 0 3.606401E-6
5 1 300 000 12145.8 1.2888E12 0 3.570438E-6
6 1 400 000 12097.4 1.2679E12 0 3.532848E-6
7 1 500 000 12039.9 1.2464E12 0 3.501614E-6
8 1 600 000 11978.7 1.2242E12 0 3.474695E-6
9 1 700 000 11913.7 1.2013E12 0 3.450718E-6

10 1 800 000 11844.8 1.1775E12 0 3.428741E-6
11 1 900 000 11771.9 1.1529E12 0 3.408098E-6
12 2 000 000 11694.7 1.1273E12 0 3.388300E-6
13 2 100 000 11613.4 1.1009E12 0 3.369001E-6
14 2 200 000 11527.5 1.0735E12 0 3.349924E-6
15 2 300 000 11437.2 1.0451E12 0 3.330871E-6
16 2 400 000 11342.1 1.0158E12 0 3.311674E-6
17 2 500 000 11242.2 9.8550E11 0 3.292208E-6
18 2 600 000 11137.4 9.5420E11 0 3.272370E-6
19 2 700 000 11027.6 9.2200E11 0 3.252078E-6
20 2 800 000 10912.5 8.8890E11 0 3.231255E-6
21 2 900 000 10792.1 8.5500E11 0 3.209843E-6
22 3 000 000 10666.3 8.2020E11 0 3.187790E-6
23 3 100 000 10534.9 7.8460E11 0 3.165050E-6
24 3 200 000 10397.8 7.4840E11 0 3.141582E-6
25 3 300 000 10254.8 7.1160E11 0 3.117348E-6
26 3 400 000 10105.9 6.7430E11 0 3.092315E-6
27 3 480 000 9966.76 6.4410E11 0 3.071688E-6

A P P E N D I X G : A S Y M P T O T I C E X P R E S S I O N S F O R L L N s O F L A RG E D E G R E E n

When either using an analytic expression or solving the equations numerically, it is inevitable that one is to encounter numerical precision
problems (Riva & Vermeersen 2002). These problems may occurs depending on specific implementation details (intrinsic precision of the
tools/programming language/library used, choice of the algorithm, and many other minor aspects that may have a large impact), and thus it
can be useful to have some asymptotic formulas which can also be used to check if the code behaves correctly.

We therefore provide some asymptotic expressions and show how they can be applied to the models studied in this paper. There are
already published formulas (i.e. Guo et al. 2004), but they are not so accurate, therefore we provide our expressions for interested readers.
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When calculating the LLNs for the different PREM models studied in this paper, we observed that, after certain large n = N, the
asymptotic behaviours of the three LLNs can be approximately predicted using the following formulations (i.e. for any n ≥ N)

−hn = −h∞ + a1

log(n)
+ a2

na3
;

nln = L∞ + b1

log(n)
+ b2

nb3
;

−nkn = −K∞ + c1

log(n)
+ c2

nc3
, (G1)

where ai, bi and ci are parameters to be determined, and h∞, L∞ and K∞ are the limiting values of hn, nln and nkn at n = ∞. These limiting
values correspond to the normalized surface responses in a layered half space under surface loading (e.g. Pan 1989). For the different PREM
earth models studied in this paper, the homogeneous half-space solution associated with the Boussinesq problem can be utilized to calculate
the limiting values (Farrell 1972)⎡
⎢⎢⎣

−h∞

L∞

−K∞

⎤
⎥⎥⎦ = game

4πa2(λ + μ)

⎡
⎢⎢⎣

λ+2μ

μ

1
3ρ(λ+μ)

2ρeμ

⎤
⎥⎥⎦ , (G2)

where me is the total mass of the Earth, ρe is the average density of the Earth, ga the gravity on the surface, a again the radius of the Earth, ρ

is the density, and λ and μ are the two Lame’s constants in the surface layer of the Earth.
Taking Models 2 (56C-26C) and 5 (56Inc-UInc) as examples, we find that, respectively,⎡

⎢⎢⎣
−h∞

L∞

−K∞

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

6.20964

1.88773

3.05623

⎤
⎥⎥⎦ (G3a)

⎡
⎢⎢⎣

−h∞

L∞

−K∞

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

4.32191

0

3.05623

⎤
⎥⎥⎦ . (G3b)

If we fix a3, b3 and c3 at 2, and use only two points to find the remaining coefficients ai, bi and ci (i = 1, 2) in each expression of eq.
(G1), say using values at points n = 5500 and 6000, we found that eq. (G1) can be used to predict the LLNs for all n > 6000 with a relative
error at most 0.001 per cent. The coefficients corresponding to these two models are listed below (obtained using Mathematica):

For Model 2 (56C-26C):

hn : a1 = −0.015898347743655127; a2 = −14014.434029657581;

nln : b1 = −0.0008892094449262606; b2 = 956.0053208811127;

nkn : c1 = −0.004181394183215393; c2 = −34213.31190196148. (G4a)

For Model 5 (56Inc-UInc):

hn : a1 = −0.017903965270320094; a2 = −37492.68804378623;

nln : b1 = −0.0022483867448176258; b2 = −17415.994856316163;

nkn : c1 = −0.005112601693189441; c2 = −41508.649287599255. (G4b)

We now apply these asymptotic expressions for large degree n. While Fig. G1 shows the LLNs for Model 2 (56C-26C). Fig. G2 shows
those for Model 5 (56Inc-UInc) where the LLNs are plotted for n from 1 to 100 000. It is noted that LLNs for any large n can be predicted based
on eq. (G1). Furthermore, we have listed in Tables G1 and G2 some LLNs, respectively, for Model 2 (56C-26C) and Model 5 (56Inc-UInc)
based on both direct calculation and asymptotic prediction of eq. (G1). It can be observed from these tables that the asymptotic prediction of
the LLNs (in parentheses) based on eq. (G1) is very accurate in the entire range from n = 3000 to infinity, much better than other asymptotic
expressions available in the literature.

We further point out that eq. (G1) is valid for n > 6000 only for the PREM models studied in this paper. For different mantle models
with different thickness layers, the asymptotic behaviour needs to be carefully analysed for accuracy.
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Figure G1. LLNs of Model 2 (56C-26C) versus n from 1 to 100 000 (analytical solution for n ≤ 6000 and asymptotic solution (G1) for n ≥ 6000).

Figure G2. LLNs of Model 5 (56Inc-UInc) versus n from 1 to 100 000 (analytical solution for n ≤ 6000 and asymptotic solution (G1) for n ≥ 6000).



A new method for computing load Love numbers 2181

Table G1. LLNs (−hn, nln and −nkn) of the Earth Model 2 (56C-26C) for large n. Values without
parentheses are directly calculated using our analytical formulations and those in parentheses are
predicted based on the asymptotic expression eq. (G1).

n −hn nln −nkn

3000 6.20355810 (6.20350857) 1.88737087 (1.88758049) 3.05190534 (3.05122818)
4000 6.20438579 (6.20434842) 1.88752214 (1.88754289) 3.05308800 (3.05293303)
4500 6.20460800 (6.20459405) 1.88752560 (1.88753381) 3.05345564 (3.05339807)
5000 6.20478282 (6.20477938) 1.88752552 (1.88752785) 3.05374779 (3.05373325)
5500 6.20492423 (6.20492423) 1.88752387 (1.88752387) 3.05398327 (3.05398327)
6000 6.20504074 (6.20504074) 1.88752120 (1.88752120) 3.05417510 (3.05417510)
6500 6.20513845 (6.20513669) 1.88751794 (1.88751942) 3.05433279 (3.05432578)
7000 6.20522158 (6.20521729) 1.88751427 (1.88751825) 3.05446373 (3.05444651)
7500 (6.20528612) (1.88751753) (3.05454491)
8000 (6.20534575) (1.88751712) (3.05462631)
10 000 (6.20552327) (1.88751726) (3.05484472)
20 000 (6.20590656) (1.88752565) (3.05517448)
50 000 (6.20624903) (1.88754115) (3.05532866)
100 000 (6.20645693) (1.88755225) (3.05539250)

Table G2. LLNs (−hn, nln and −nkn) of the Earth Model 5 (56Inc-UInc) for large n. Values without
parentheses are directly calculated using our analytical formulations and those in parentheses are
predicted based on the asymptotic expression eq. (G1).

n −hn nln −nkn

3000 4.31324704 (4.31259147) −0.00230948(−0.00258173) 3.05099448 (3.05014757)
4000 4.31477172 (4.31459263) −0.00162003 (−0.00171269) 3.05241101 (3.05221635)
4500 4.31522456 (4.31515403) −0.00143836 (−0.00147550) 3.05285395 (3.05278071)
5000 4.31558529 (4.31556644) −0.00129445 (−0.00130448) 3.05320620 (3.05318749)
5500 4.31588028 (4.31588028) −0.00117685 (−0.00117685) 3.05349094 (3.05349094)
6000 4.31612612 (4.31612612) −0.00107888 (−0.00107888) 3.05372378 (3.05372378)
6500 4.31633422 (4.31632699) −0.00099602 (−0.00100189) 3.05391629 (3.05390668)
7000 4.31651252 (4.31648853) −0.00092478 (−0.00094017) 3.05407698 (3.05405324)
7500 (4.31662316) (−0.00088984) (3.05417271)
8000 (4.31673705) (−0.00084818) (3.05427154)
10 000 (4.31705908) (−0.00073626) (3.05453676)
20 000 (4.31765355) (−0.00056630) (3.05493754)
50 000 (4.31808481) (−0.00048545) (3.05512537)
100 000 (4.31832546) (−0.00045142) (3.05520333)


