6,703 research outputs found

    Indirect Detection of CMSSM Neutralino Dark Matter with Neutrino Telescopes

    Full text link
    We review the prospects of detecting supersymmetric dark matter in the framework of the Constrained Minimal Supersymmetric Standard Model, and compare indirect with direct detection capabilities.Comment: 6 pages, 4 figures, presented by J. Orloff at the York IDM02 workshop (http://www.shef.ac.uk/~phys/idm2002

    Neutrino Indirect Detection of Neutralino Dark Matter in the CMSSM

    Full text link
    We study potential signals of neutralino dark matter indirect detection by neutrino telescopes in a wide range of CMSSM parameters. We also compare with direct detection potential signals taking into account in both cases present and future experiment sensitivities. Only models with neutralino annihilation into gauge bosons can satisfy cosmological constraints and current neutrino indirect detection sensitivities. For both direct and indirect detection, only next generation experiments will be able to really test this kind of models.Comment: 16 pages, 19 figures; v4: a few clarifications and significant improvement of reference

    Jamming transition of a granular pile below the angle of repose

    Full text link
    We study experimentally the relaxation towards mechanical equilibrium of a granular pile which has just experienced an avalanche and discuss it in the more general context of the granular jamming transition. Two coexisting dynamics are observed in the surface layer: a short time exponential decay consisting in rapid and independent moves of grains and intermittent bursts consisting in spatially correlated moves lasting for longer time. The competition of both dynamics results in long-lived intermittent transients, the total duration of which can late more than a thousand of seconds. We measure a two-time relaxation function, and relate it via a simple statistical model to a more usual two-time correlation function which exhibits strong similarities with auto-correlation functions found in aging systems. Localized perturbation experiments also allow us to test the pile surface layer receptivity.Comment: 9 pages, 10 figure

    R-local Delaunay inhibition model

    Full text link
    Let us consider the local specification system of Gibbs point process with inhib ition pairwise interaction acting on some Delaunay subgraph specifically not con taining the edges of Delaunay triangles with circumscribed circle of radius grea ter than some fixed positive real value RR. Even if we think that there exists at least a stationary Gibbs state associated to such system, we do not know yet how to prove it mainly due to some uncontrolled "negative" contribution in the expression of the local energy needed to insert any number of points in some large enough empty region of the space. This is solved by introducing some subgraph, called the RR-local Delaunay graph, which is a slight but tailored modification of the previous one. This kind of model does not inherit the local stability property but satisfies s ome new extension called RR-local stability. This weakened property combined with the local property provides the existence o f Gibbs state.Comment: soumis \`{a} Journal of Statistical Physics 27 page

    Trap models with slowly decorrelating observables

    Full text link
    We study the correlation and response dynamics of trap models of glassy dynamics, considering observables that only partially decorrelate with every jump. This is inspired by recent work on a microscopic realization of such models, which found strikingly simple linear out-of-equilibrium fluctuation-dissipation relations in the limit of slow decorrelation. For the Barrat-Mezard model with its entropic barriers we obtain exact results at zero temperature TT for arbitrary decorrelation factor κ\kappa. These are then extended to nonzero TT, where the qualitative scaling behaviour and all scaling exponents can still be found analytically. Unexpectedly, the choice of transition rates (Glauber versus Metropolis) affects not just prefactors but also some exponents. In the limit of slow decorrelation even complete scaling functions are accessible in closed form. The results show that slowly decorrelating observables detect persistently slow out-of-equilibrium dynamics, as opposed to intermittent behaviour punctuated by excursions into fast, effectively equilibrated states.Comment: 29 pages, IOP styl

    Global fluctuations and Gumbel statistics

    Full text link
    We explain how the statistics of global observables in correlated systems can be related to extreme value problems and to Gumbel statistics. This relationship then naturally leads to the emergence of the generalized Gumbel distribution G_a(x), with a real index a, in the study of global fluctuations. To illustrate these findings, we introduce an exactly solvable nonequilibrium model describing an energy flux on a lattice, with local dissipation, in which the fluctuations of the global energy are precisely described by the generalized Gumbel distribution.Comment: 4 pages, 3 figures; final version with minor change

    Involutive constrained systems and Hamilton-Jacobi formalism

    Full text link
    In this paper, we study singular systems with complete sets of involutive constraints. The aim is to establish, within the Hamilton-Jacobi theory, the relationship between the Frobenius' theorem, the infinitesimal canonical transformations generated by constraints in involution with the Poisson brackets, and the lagrangian point (gauge) transformations of physical systems

    Analysis of the low-energy π±p\pi^\pm p differential cross sections of the CHAOS Collaboration

    Full text link
    This paper presents the results of an analysis of the low-energy π±p\pi^\pm p differential cross sections, acquired by the CHAOS Collaboration at TRIUMF \cite{chaos,denz}. We first analyse separately the π+p\pi^+ p and the π−p\pi^- p elastic-scattering measurements on the basis of standard low-energy parameterisations of the ss- and p-wave KK-matrix elements. After the removal of the outliers, we subject the truncated π±p\pi^\pm p elastic-scattering databases into a common optimisation scheme using the ETH model \cite{glmbg}; the optimisation failed to produce reasonable values for the model parameters. We conclude that the problems we have encountered in the analysis of these data are due to the shape of the angular distributions of their π+p\pi^+ p differential cross sections
    • …
    corecore