441 research outputs found

    Constraining dark matter halo profiles and galaxy formation models using spiral arm morphology. II. Dark and stellar mass concentrations for 13 nearby face-on galaxies

    Full text link
    We investigate the use of spiral arm pitch angles as a probe of disk galaxy mass profiles. We confirm our previous result that spiral arm pitch angles (P) are well correlated with the rate of shear (S) in disk galaxy rotation curves. We use this correlation to argue that imaging data alone can provide a powerful probe of galactic mass distributions out to large look-back times. We then use a sample of 13 galaxies, with Spitzer 3.6-μ\mum imaging data and observed Hα\alpha rotation curves, to demonstrate how an inferred shear rate coupled with a bulge-disk decomposition model and a Tully-Fisher-derived velocity normalization can be used to place constraints on a galaxy's baryon fraction and dark matter halo profile. Finally we show that there appears to be a trend (albeit a weak correlation) between spiral arm pitch angle and halo concentration. We discuss implications for the suggested link between supermassive black hole (SMBH) mass and dark halo concentration, using pitch angle as a proxy for SMBH mass.Comment: 14 pages, 6 figures. Accepted for publication in the Astrophysical Journa

    Operating Characteristics of the Multiple Critical Venturi System and Secondary Calibration Nozzles Used for Weight-Flow Measurements in the Langley 16-Foot Transonic Tunnel

    Get PDF
    An investigation has been conducted in the Langley 16 Foot Transonic Tunnel to determine the weight flow measurement characteristics of a multiple critical Venturi system and the nozzle discharge coefficient characteristics of a series of convergent calibration nozzles. The effects on model discharge coefficient of nozzle throat area, model choke plate open area, nozzle pressure ratio, jet total temperature, and number and combination of operating Venturis were investigated. Tests were conducted at static conditions (tunnel wind off) at nozzle pressure ratios from 1.3 to 7.0

    Collective resonances in plasmonic crystals: Size matters

    Full text link
    Periodic arrays of metallic nanoparticles may sustain Surface Lattice Resonances (SLRs), which are collective resonances associated with the diffractive coupling of Localized Surface Plasmon Resonances (LSPRs). By investigating a series of arrays with varying number of particles, we traced the evolution of SLRs to its origins. Polarization resolved extinction spectra of arrays formed by a few nanoparticles were measured, and found to be in very good agreement with calculations based on a coupled dipole model. Finite size effects on the optical properties of the arrays are observed, and our results provide insight into the characteristic length scales for collective plasmonic effects: for arrays smaller than 5 x 5 particles, the Q-factors of SLRs are lower than those of LSPRs; for arrays larger than 20 x 20 particles, the Q-factors of SLRs saturate at a much larger value than those of LSPRs; in between, the Q-factors of SLRs are an increasing function of the number of particles in the array.Comment: 4 figure

    Counts-in-Cylinders in the Sloan Digital Sky Survey with Comparisons to N-body Simulations

    Full text link
    Environmental statistics provide a necessary means of comparing the properties of galaxies in different environments and a vital test of models of galaxy formation within the prevailing, hierarchical cosmological model. We explore counts-in-cylinders, a common statistic defined as the number of companions of a particular galaxy found within a given projected radius and redshift interval. Galaxy distributions with the same two-point correlation functions do not necessarily have the same companion count distributions. We use this statistic to examine the environments of galaxies in the Sloan Digital Sky Survey, Data Release 4. We also make preliminary comparisons to four models for the spatial distributions of galaxies, based on N-body simulations, and data from SDSS DR4 to study the utility of the counts-in-cylinders statistic. There is a very large scatter between the number of companions a galaxy has and the mass of its parent dark matter halo and the halo occupation, limiting the utility of this statistic for certain kinds of environmental studies. We also show that prevalent, empirical models of galaxy clustering that match observed two- and three-point clustering statistics well fail to reproduce some aspects of the observed distribution of counts-in-cylinders on 1, 3 and 6-Mpc/h scales. All models that we explore underpredict the fraction of galaxies with few or no companions in 3 and 6-Mpc/h cylinders. Roughly 7% of galaxies in the real universe are significantly more isolated within a 6 Mpc/h cylinder than the galaxies in any of the models we use. Simple, phenomenological models that map galaxies to dark matter halos fail to reproduce high-order clustering statistics in low-density environments.Comment: 17 pages, 10 figures. Accepted, Ap

    Galaxy Rotation Curves in the Context of LambdaCDM Cosmology

    Get PDF

    Small-Scale Structure in the SDSS and LCDM: Isolated L* Galaxies with Bright Satellites

    Full text link
    We use a volume-limited spectroscopic sample of isolated galaxies in the Sloan Digital Sky Survey (SDSS) to investigate the frequency and radial distribution of luminous (M_r <~ -18.3) satellites like the Large Magellanic Cloud (LMC) around ~L* Milky Way analogs and compare our results object-by-object to LCDM predictions based on abundance matching in simulations. We show that 12% of Milky Way-like galaxies host an LMC-like satellite within 75 kpc (projected), and 42 % within 250 kpc (projected). This implies ~10% have a satellite within the distance of the LMC, and ~40% of L* galaxies host a bright satellite within the virialized extent of their dark matter halos. Remarkably, the simulation reproduces the observed frequency, radial dependence, velocity distribution, and luminosity function of observed secondaries exceptionally well, suggesting that LCDM provides an accurate reproduction of the observed Universe to galaxies as faint as L~10^9 Lsun on ~50 kpc scales. When stacked, the observed projected pairwise velocity dispersion of these satellites is sigma~160 km/s, in agreement with abundance-matching expectations for their host halo masses. Finally, bright satellites around L* primaries are significantly redder than typical galaxies in their luminosity range, indicating that environmental quenching is operating within galaxy-size dark matter halos that typically contain only a single bright satellite. This redness trend is in stark contrast to the Milky Way's LMC, which is unusually blue even for a field galaxy. We suggest that the LMC's discrepant color might be further evidence that it is undergoing a triggered star-formation event upon first infall.Comment: 14 pages, 11 figures; accepted to Ap
    • …
    corecore