251 research outputs found

    Risks of myeloid malignancies in patients with autoimmune conditions

    Get PDF
    Autoimmune conditions are associated with an elevated risk of lymphoproliferative malignancies, but few studies have investigated the risk of myeloid malignancies. From the US Surveillance Epidemiology and End Results (SEER)-Medicare database, 13 486 myeloid malignancy patients (aged 67+ years) and 160 086 population-based controls were selected. Logistic regression models adjusted for gender, age, race, calendar year and number of physician claims were used to estimate odds ratios (ORs) for myeloid malignancies in relation to autoimmune conditions. Multiple comparisons were controlled for using the Bonferroni correction (P<0.0005). Autoimmune conditions, overall, were associated with an increased risk of acute myeloid leukaemia (AML) (OR 1.29) and myelodysplastic syndrome (MDS, OR 1.50). Specifically, AML was associated with rheumatoid arthritis (OR 1.28), systemic lupus erythematosus (OR 1.92), polymyalgia rheumatica (OR 1.73), autoimmune haemolytic anaemia (OR 3.74), systemic vasculitis (OR 6.23), ulcerative colitis (OR 1.72) and pernicious anaemia (OR 1.57). Myelodysplastic syndrome was associated with rheumatoid arthritis (OR1.52) and pernicious anaemia (OR 2.38). Overall, autoimmune conditions were not associated with chronic myeloid leukaemia (OR 1.09) or chronic myeloproliferative disorders (OR 1.15). Medications used to treat autoimmune conditions, shared genetic predisposition and/or direct infiltration of bone marrow by autoimmune conditions, could explain these excess risks of myeloid malignancies

    Metabolite Profiling of Alzheimer's Disease Cerebrospinal Fluid

    Get PDF
    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive loss of cognitive functions. Today the diagnosis of AD relies on clinical evaluations and is only late in the disease. Biomarkers for early detection of the underlying neuropathological changes are still lacking and the biochemical pathways leading to the disease are still not completely understood. The aim of this study was to identify the metabolic changes resulting from the disease phenotype by a thorough and systematic metabolite profiling approach. For this purpose CSF samples from 79 AD patients and 51 healthy controls were analyzed by gas and liquid chromatography-tandem mass spectrometry (GC-MS and LC-MS/MS) in conjunction with univariate and multivariate statistical analyses. In total 343 different analytes have been identified. Significant changes in the metabolite profile of AD patients compared to healthy controls have been identified. Increased cortisol levels seemed to be related to the progression of AD and have been detected in more severe forms of AD. Increased cysteine associated with decreased uridine was the best paired combination to identify light AD (MMSE>22) with specificity and sensitivity above 75%. In this group of patients, sensitivity and specificity above 80% were obtained for several combinations of three to five metabolites, including cortisol and various amino acids, in addition to cysteine and uridine

    Identification of Histological Patterns in Clinically Affected and Unaffected Palm Regions in Dupuytren's Disease

    Get PDF
    Dupuytren's disease is a fibro-proliferative disease characterized by a disorder of the extracellular matrix (ECM) and high myofibroblast proliferation. However, studies failed to determine if the whole palm fascia is affected by the disease. The objective of this study was to analyze several components of the extracellular matrix of three types of tissues—Dupuytren's diseased contracture cords (DDC), palmar fascia clinically unaffected by Dupuytren's disease contracture (NPF), and normal forehand fascia (NFF). Histological analysis, quantification of cells recultured from each type of tissue, mRNA microarrays and immunohistochemistry for smooth muscle actin (SMA), fibrillar ECM components and non-fibrillar ECM components were carried out. The results showed that DDC samples had abundant fibrosis with reticular fibers and few elastic fibers, high cell proliferation and myofibroblasts, laminin and glycoproteins, whereas NFF did not show any of these findings. Interestingly, NPF tissues had more cells showing myofibroblasts differentiation and more collagen and reticular fibers, laminin and glycoproteins than NFF, although at lower level than DDC, with similar elastic fibers than DDC. Immunohistochemical expression of decorin was high in DDC, whereas versican was highly expressed NFF, with no differences for aggrecan. Cluster analysis revealed that the global expression profile of NPF was very similar to DDC, and reculturing methods showed that cells corresponding to DDC tissues proliferated more actively than NPF, and NPF more actively than NFF. All these results suggest that NPF tissues may be affected, and that a modification of the therapeutic approach used for the treatment of Dupuytren's disease should be considered.This work was supported by CTS-115 (Tissue Engineering Group), University of Granada/Spain

    Comprehensive Analysis of 5-Aminolevulinic Acid Dehydrogenase (ALAD) Variants and Renal Cell Carcinoma Risk among Individuals Exposed to Lead

    Get PDF
    BACKGROUND: Epidemiologic studies are reporting associations between lead exposure and human cancers. A polymorphism in the 5-aminolevulinic acid dehydratase (ALAD) gene affects lead toxicokinetics and may modify the adverse effects of lead. METHODS: The objective of this study was to evaluate single-nucleotide polymorphisms (SNPs) tagging the ALAD region among renal cancer cases and controls to determine whether genetic variation alters the relationship between lead and renal cancer. Occupational exposure to lead and risk of cancer was examined in a case-control study of renal cell carcinoma (RCC). Comprehensive analysis of variation across the ALAD gene was assessed using a tagging SNP approach among 987 cases and 1298 controls. Occupational lead exposure was estimated using questionnaire-based exposure assessment and expert review. Odds ratios (OR) and 95% confidence intervals (CI) were calculated using logistic regression. RESULTS: The adjusted risk associated with the ALAD variant rs8177796(CT/TT) was increased (OR = 1.35, 95%CI = 1.05-1.73, p-value = 0.02) when compared to the major allele, regardless of lead exposure. Joint effects of lead and ALAD rs2761016 suggest an increased RCC risk for the homozygous wild-type and heterozygous alleles ((GG)OR = 2.68, 95%CI = 1.17-6.12, p = 0.01; (GA)OR = 1.79, 95%CI = 1.06-3.04 with an interaction approaching significance (p(int) = 0.06). No significant modification in RCC risk was observed for the functional variant rs1800435(K68N). Haplotype analysis identified a region associated with risk supporting tagging SNP results. CONCLUSION: A common genetic variation in ALAD may alter the risk of RCC overall, and among individuals occupationally exposed to lead. Further work in larger exposed populations is warranted to determine if ALAD modifies RCC risk associated with lead exposure

    Transcriptomic Analysis Reveals Novel Mechanistic Insight into Murine Biological Responses to Multi-Walled Carbon Nanotubes in Lungs and Cultured Lung Epithelial Cells

    Get PDF
    There is great interest in substituting animal work with in vitro experimentation in human health risk assessment; however, there are only few comparisons of in vitro and in vivo biological responses to engineered nanomaterials. We used high-content genomics tools to compare in vivo pulmonary responses of multiwalled carbon nanotubes (MWCNT) to those in vitro in cultured lung epithelial cells (FE1) at the global transcriptomic level. Primary size, surface area and other properties of MWCNT- XNRI -7 (Mitsui7) were characterized using DLS, SEM and TEM. Mice were exposed via a single intratracheal instillation to 18, 54, or 162 μg of Mitsui7/mouse. FE1 cells were incubated with 12.5, 25 and 100 μg/ml of Mitsui7. Tissue and cell samples were collected at 24 hours post-exposure. DNA microarrays were employed to establish mechanistic differences and similarities between the two models. Microarray results were confirmed using gene-specific RT-qPCR. Bronchoalveolar lavage (BAL) fluid was assessed for indications of inflammation in vivo. A strong dose-dependent activation of acute phase and inflammation response was observed in mouse lungs reflective mainly of an inflammatory response as observed in BAL. In vitro, a wide variety of core cellular functions were affected including transcription, cell cycle, and cellular growth and proliferation. Oxidative stress, fibrosis and inflammation processes were altered in both models. Although there were similarities observed between the two models at the pathway-level, the specific genes altered under these pathways were different, suggesting that the underlying mechanisms of responses are different in cells in culture and the lung tissue. Our results suggest that careful consideration should be given in selecting relevant endpoints when substituting animal with in vitro testing

    Laser Patterning Pretreatment before Thermal Spraying: A Technique to Adapt and Control the Surface Topography to Thermomechanical Loading and Materials

    Get PDF
    Coating characteristics are highly dependent on substrate preparation and spray parameters. Hence, the surface must be adapted mechanically and physicochemically to favor coating–substrate adhesion. Conventional surface preparation methods such as grit blasting are limited by surface embrittlement and produce large plastic deformations throughout the surface, resulting in compressive stress and potential cracks. Among all such methods, laser patterning is suitable to prepare the surface of sensitive materials. No embedded grit particles can be observed, and high-quality coatings are obtained. Finally, laser surface patterning adapts the impacted surface, creating large anchoring area. Optimized surface topographies can then be elaborated according to the material as well as the application. The objective of this study is to compare the adhesive bond strength between two surface preparation methods, namely grit blasting and laser surface patterning, for two material couples used in aerospace applications: 2017 aluminum alloy and AISI 304L stainless steel coated with NiAl and YSZ, respectively. Laser patterning significantly increases adherence values for similar contact area due to mixed-mode (cohesive and adhesive) failure. The coating is locked in the pattern

    Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome

    Get PDF
    corecore