20 research outputs found

    The AEPEX CubeSat Mission: Quantifying Energetic Particle Precipitation through Bremsstrahlung X-Ray Imaging

    Get PDF
    Fundamental gaps exist in the understanding and observation of energetic particle precipitation (EPP),a solar-terrestrial coupling mechanism that is vital for climatelogical modeling of the atmosphere and magnetosphere. The Atmospheric Effects of Precipitation through Energetic X-rays (AEPEX) mission is a 6U CubeSat that will measure energetic electron spectra and X-ray images in order to quantify the spatial scales and amount of energy input into the atmosphere, and therefore lost from the magnetosphere, via EPP. AEPEX includes two instruments; AEPEX’s FIRE (Focused Investigations of Relativistic Electron) instrument (AFIRE), a TRL 9 electron detector previously flown on the FIREBIRD mission; and the Atmospheric X-ray Imaging Spectrometer (AXIS), an instrument being developed at CU Boulder that will take novel images and spectra of 50–300 keV X-ray photons. This work describes the AEPEX mission overview, the detailed design and operation of AXIS, and initial test and calibration results

    The AEPEX Mission: Imaging Energetic Particle Precipitation Into Earth’s Upper Atmosphere

    Get PDF
    Radiation belt electron fluxes can be enhanced during geomagnetic storms by two orders of magnitude; subsequently, these fluxes decay back to nominal levels in a few days. Precipitation into the upper atmosphere is a primary loss mechanism for these electrons, particularly during the decay phase. Upon impacting the upper atmosphere, these electrons create new ionization, leading to a chemical response that increases NOx and HOx and destroys ozone. Quantifying both radiation belt loss and the impact on the atmosphere requires an accurate estimate of the flux, energy spectrum, and spatial and temporal scales of precipitation. The NASA-funded Atmospheric Effects of Precipitation through Energetic X-rays (AEPEX) Cube-Sat mission is designed to quantify these parameters of radiation belt precipitation by measuring the bremsstrahlung X-rays created during the precipitation process, using a new instrument called the Atmospheric X-ray Imaging Spectrometer (AXIS). Hard X-rays (50-300 keV) emitted by Earth’s atmosphere have previously been measured from high-altitude balloons and satellites, but have never been imaged from space. The AXIS instrument will image the X-ray fluxes produced by the atmosphere, providing measurements of spatial scales, along with the X-ray flux and spectrum, using off-the-shelf pixelated detector modules and coded aperture optics. A solid-state energetic particle detector, with heritage from the FIREBIRD Cube Sat mission, will measure the precipitating electron energy spectrum, which is used to constrain the inversion from X-ray fluxes to electron fluxes. The AEPEX spacecraft is a 6U CubeSat, currently being built by the University of Colorado Boulder. It includes a custom-designed structure and a custom spacecraft bus consisting of an electrical power system, command and data handling, flight software, and instrument interface electronics designed by the Laboratory for Atmospheric and Space Physics (LASP) at CU Boulder. The system also includes custom-designed doubly-deployable solar panels. The mission will be launched into ahigh-inclination orbit to ensure coverage of high latitudes; launch is scheduled for early 2024

    Quantifying intracellular protein binding thermodynamics during mechanotransduction based on FRET spectroscopy.

    Get PDF
    Mechanical force modulates myriad cellular functions including migration, alignment, proliferation, and gene transcription. Mechanotransduction, the transmission of mechanical forces and its translation into biochemical signals, may be mediated by force induced protein conformation changes, subsequently modulating protein signaling. For the paxillin and focal adhesion kinase interaction, we demonstrate that force-induced changes in protein complex conformation, dissociation constant, and binding Gibbs free energy can be quantified by lifetime-resolved fluorescence energy transfer microscopy combined with intensity imaging calibrated by fluorescence correlation spectroscopy. Comparison with in vitro data shows that this interaction is allosteric in vivo. Further, spatially resolved imaging and inhibitor assays show that this protein interaction and its mechano-sensitivity are equal in the cytosol and in the focal adhesions complexes indicating that the mechano-sensitivity of this interaction must be mediated by soluble factors but not based on protein tyrosine phosphorylation
    corecore