1,382 research outputs found

    Knee adduction moment and medial contact force - facts about their correlation during gait

    Get PDF
    The external knee adduction moment is considered a surrogate measure for the medial tibiofemoral contact force and is commonly used to quantify the load reducing effect of orthopedic interventions. However, only limited and controversial data exist about the correlation between adduction moment and medial force. The objective of this study was to examine whether the adduction moment is indeed a strong predictor for the medial force by determining their correlation during gait. Instrumented knee implants with telemetric data transmission were used to measure tibiofemoral contact forces in nine subjects. Gait analyses were performed simultaneously to the joint load measurements. Skeletal kinematics, as well as the ground reaction forces and inertial parameters, were used as inputs in an inverse dynamics approach to calculate the external knee adduction moment. Linear regression analysis was used to analyze the correlation between adduction moment and medial force for the whole stance phase and separately for the early and late stance phase. Whereas only moderate correlations between adduction moment and medial force were observed throughout the whole stance phase (R(2)?=?0.56) and during the late stance phase (R(2)?=?0.51), a high correlation was observed at the early stance phase (R(2)?=?0.76). Furthermore, the adduction moment was highly correlated to the medial force ratio throughout the whole stance phase (R(2)?=?0.75). These results suggest that the adduction moment is a surrogate measure, well-suited to predicting the medial force ratio throughout the whole stance phase or medial force during the early stance phase. However, particularly during the late stance phase, moderate correlations and high inter-individual variations revealed that the predictive value of the adduction moment is limited. Further analyses are necessary to examine whether a combination of other kinematic, kinetic or neuromuscular factors may lead to a more reliable prediction of the force magnitud

    Computational search for isotopic semifields and planar functions in characteristic 3

    Get PDF
    In this thesis, we investigate the possibility of finding new planar functions and corresponding semifields in characteristic 3 by the construction of isotopic semifields from the known families and sporadic instances of planar functions. Using the conditions laid out by Coulter and Henderson, we are able to deduce that a number of the known infinite families can never produce CCZ-inequivalent functions via isotopism. For the remaining families, we computationally investigate the isotopism classes of their instances over finite fields of order 3^n for n ≤ 8. We find previously unknown isotopisms between the semifields corresponding to some of the known planar functions for n = 6 and n = 8. This allows us to refine the known classification of planar functions up to isotopism, and to provide an updated, partial classification up to isotopism over finite fields of order 3^n for n ≤ 8.Masteroppgave i informatikkINF399MAMN-INFMAMN-PRO

    Standardized loads acting in knee implants

    Get PDF
    The loads acting in knee joints must be known for improving joint replacement, surgical procedures, physiotherapy, biomechanical computer simulations, and to advise patients with osteoarthritis or fractures about what activities to avoid. Such data would also allow verification of test standards for knee implants. This work analyzes data from 8 subjects with instrumented knee implants, which allowed measuring the contact forces and moments acting in the joint. The implants were powered inductively and the loads transmitted at radio frequency. The time courses of forces and moments during walking, stair climbing, and 6 more activities were averaged for subjects with I) average body weight and average load levels and II) high body weight and high load levels. During all investigated activities except jogging, the high force levels reached 3,372–4,218N. During slow jogging, they were up to 5,165N. The peak torque around the implant stem during walking was 10.5 Nm, which was higher than during all other activities including jogging. The transverse forces and the moments varied greatly between the subjects, especially during non-cyclic activities. The high load levels measured were mostly above those defined in the wear test ISO 14243. The loads defined in the ISO test standard should be adapted to the levels reported here. The new data will allow realistic investigations and improvements of joint replacement, surgical procedures for tendon repair, treatment of fractures, and others. Computer models of the load conditions in the lower extremities will become more realistic if the new data is used as a gold standard. However, due to the extreme individual variations of some load components, even the reported average load profiles can most likely not explain every failure of an implant or a surgical procedure

    Incrementalizing Lattice-Based Program Analyses in Datalog

    Get PDF
    Program analyses detect errors in code, but when code changes frequently as in an IDE, repeated re-analysis from-scratch is unnecessary: It leads to poor performance unless we give up on precision and recall. Incremental program analysis promises to deliver fast feedback without giving up on precision or recall by deriving a new analysis result from the previous one. However, Datalog and other existing frameworks for incremental program analysis are limited in expressive power: They only support the powerset lattice as representation of analysis results, whereas many practically relevant analyses require custom lattices and aggregation over lattice values. To this end, we present a novel algorithm called DRedL that supports incremental maintenance of recursive lattice-value aggregation in Datalog. The key insight of DRedL is to dynamically recognize increasing replacements of old lattice values by new ones, which allows us to avoid the expensive deletion of the old value. We integrate DRedL into the analysis framework IncA and use IncA to realize incremental implementations of strong-update points-to analysis and string analysis for Java. As our performance evaluation demonstrates, both analyses react to code changes within milliseconds

    Determination of Lamb Wave Modes on Lithium-Ion Batteries Using Piezoelectric Transducers

    Get PDF
    This work presents a method to determine the type of Lamb mode (antisymmetric or symmetric) that propagates through a lithium-ion pouch cell. To determine the type of mode and the group velocity at a specific frequency, two- and three-transducer setups were created. For these setups, it is important that all transducers have the same polarization direction. Two transducers are affixed to the center of the cell at a distance of several centimeters from each other so that the group velocity can be determined. Using cross-correlation, the group velocity of the emerging mode can be calculated. The measurement setup and the processing method was first validated with experiments on acrylic glass and aluminum plates. The measurements were supported with FEM simulations and a numerically calculated model. The output voltages of the receiving piezo-elements obtained in the FEM simulation are in agreement with the underlying theories. The phase shift, which results from the output voltage of the piezo-elements mounted one above the other on different sides of the plate, shows the type of mode. The results of the experimental determination of the Lamb mode that propagates through a lithium-ion pouch cell were validated with a numerically calculated multi-layer model and therefore validate this novel experimental approach

    Pulse contour analysis: a valid assessment of central arterial stiffness in children?

    Get PDF
    In adults the contour analysis of peripheral pressure waves in the upper limb reflects central aortic stiffness. Here, we wanted to demonstrate the appropriateness of pulse contour analysis to assess large artery stiffness in children. Digital volume pulse analysis, with the computation of the stiffness index and pulse wave velocity between carotid and femoral artery, were simultaneously determined in 79 healthy children between 8years and 15years (mean age 11.4years, 32 girls). The stiffness index of 42 healthy adults (mean age 45.6years, 26 women) served as control. Pulse wave velocity between carotid and femoral artery was directly correlated with systolic pressure and mean blood pressure, as well as with pulse pressure. The results from the stiffness index of children revealed the expected values extrapolated from the linear regression of adulthood stiffness index vs. age. Childhood stiffness index positively correlated with pulse wave velocity (r2 = 0.07, P = 0.02) but not with blood pressure parameters. The exclusion of individuals with an increased vascular tone, as indicated by a reflexion index >90%, improved the correlation between stiffness index and pulse wave velocity (r2 = 0.13, P = 0.001). Our data indicate that digital volume pulse-based analysis has limitations if compared with pulse wave velocity to measure arterial stiffness, mostly in patients with a high vascular ton

    Experimental verification of analytical calculation approaches and FEM material models with the aim of determining friction of thermoplastics

    Get PDF
    The paper presents analytical approaches for calculating the effective contact area of the sphere-plane contact, which allow conclusions to be drawn about the coefficient of friction of thermoplastics with manageable effort. These approaches are verified experimentally utilizing friction and wear tests using the example of a steel sphere against PE-UHMW. The friction area of the sphere was varied using a self-constructed adjustment unit and a spherical wedge. With the help of parametric experiments regarding the angular position of the spherical wedge, a limiting contact angle was detected. This limiting angle allows the calculation of the deformative and adhesive friction. FE models are being developed for the simulative verification of the analytical approaches and further investigations of structures for friction reduction. These require specific material models as a basis for the representation of the stress-strain behavior in contact. The different FEM material models are calibrated and compared against each other based on experimental tests. The materials POM, PP, PMMA, and PE-UHMW were considered

    Competition of Dzyaloshinskii-Moriya and higher-order exchange interactions in Rh/Fe atomic bilayers on Ir(111)

    Full text link
    Using spin-polarized scanning tunneling microscopy and density functional theory we demonstrate the occurrence of a novel type of noncollinear spin structure in Rh/Fe atomic bilayers on Ir(111). We find that higher-order exchange interactions depend sensitively on the stacking sequence. For fcc-Rh/Fe/Ir(111) frustrated exchange interactions are dominant and lead to the formation of a spin spiral ground state with a period of about 1.5 nm. For hcp-Rh/Fe/Ir(111) higher-order exchange interactions favor a double-row wise antiferromagnetic or "uudd" state. However, the Dzyaloshinskii- Moriya interaction at the Fe/Ir interface leads to a small angle of about 4{\deg} between adjacent magnetic moments resulting in a canted "uudd" ground state
    • …
    corecore