1,956 research outputs found

    Total Cross Sections for Neutron Scattering

    Get PDF
    Measurements of neutron total cross-sections are both extensive and extremely accurate. Although they place a strong constraint on theoretically constructed models, there are relatively few comparisons of predictions with experiment. The total cross-sections for neutron scattering from 16^{16}O and 40^{40}Ca are calculated as a function of energy from 5070050-700~MeV laboratory energy with a microscopic first order optical potential derived within the framework of the Watson expansion. Although these results are already in qualitative agreement with the data, the inclusion of medium corrections to the propagator is essential to correctly predict the energy dependence given by the experiment.Comment: 10 pages (Revtex 3.0), 6 fig

    The Neutron Halo in Heavy Nuclei Calculated with the Gogny Force

    Full text link
    The proton and neutron density distributions, one- and two-neutron separation energies and radii of nuclei for which neutron halos are experimentally observed, are calculated using the self-consistent Hartree-Fock-Bogoliubov method with the effective interaction of Gogny. Halo factors are evaluated assuming hydrogen-like antiproton wave functions. The factors agree well with experimental data. They are close to those obtained with Skyrme forces and with the relativistic mean field approach.Comment: 13 pages in Latex and 17 figures in ep

    Tagger design optimization

    No full text
    This note presents the simulations and tests performed at LPSC Grenoble for the optimization of the DVCS tagger paddles. The choice of the wrapping material and the addition of a light guide with a specific triangular cut are discussed and confronted to experimental measurements. This study led to the final configuration of the DVCS tagger

    Quasi-Local Density Functional Theory and its Application within Extended Thomas-Fermi Approximation

    Get PDF
    A generalization of the Density Functional Theory is proposed. The theory developed leads to single-particle equations of motion with a quasi-local mean-field operator, which contains a quasi-particle position-dependent effective mass and a spin-orbit potential. The energy density functional is constructed using the Extended Thomas-Fermi approximation. Within the framework of this approach the ground-state properties of the doubly magic nuclei are considered. The calculations have been performed using the finite-range Gogny D1S force. The results are compared with the exact Hartree-Fock calculations

    QCD Factorized Drell-Yan Cross Section at Large Transverse Momentum

    Full text link
    We derive a new factorization formula in perturbative quantum chromodynamics for the Drell-Yan massive lepton-pair cross section as a function of the transverse momentum QTQ_T of the pair. When QTQ_T is much larger than the pair's invariant mass QQ, this factorization formula systematically resums the logarithmic contributions of the type αsmlnm(QT2/Q2)\alpha_s^m \ln^m(Q_T^2/Q^2) to all orders in the strong coupling αs\alpha_s. When QTQQ_T\sim Q, our formula yields the same Drell-Yan cross section as conventional fixed order QCD perturbation theory. We show that resummation is important when the collision energy S\sqrt{S} is large enough and QTQQ_T\gg Q, and we argue that perturbative expansions are more stable and reliable in terms of the modified factorization formula.Comment: 36 pages, latex, including 16 figure

    Virtual photon fragmentation functions

    Get PDF
    We introduce operator definitions for virtual photon fragmentation functions, which are needed for reliable calculations of Drell-Yan transverse momentum (QTQ_T) distributions when QTQ_T is much larger than the invariant mass QQ. We derive the evolution equations for these fragmentation functions. We calculate the leading order evolution kernels for partons to fragment into a unpolarized as well as a polarized virtual photon. We find that fragmentation functions to a longitudinally polarized virtual photon are most important at small zz, and the fragmentation functions to a transversely polarized virtual photon dominate the large zz region. We discuss the implications of this finding to the J/ψ\psi mesons' polarization at large transverse momentum.Comment: Latex, 19 pages including 6 figures. An error in the first version has been corrected, and references update

    Approximate particle number projection for finite range density dependent forces

    Get PDF
    The Lipkin-Nogami method is generalized to deal with finite range density dependent forces. New expressions are derived and realistic calculations with the Gogny force are performed for the nuclei 164^{164}Er and 168^{168}Er. The sharp phase transition predicted by the mean field approximation is washed out by the Lipkin-Nogami approach; a much better agreement with the experimental data is reached with the new approach than with the Hartree-Fock_Bogoliubov one, specially at high spins.Comment: 5 pages, RevTeX 3.0, 3 postscript figures included using uufiles. Submitted to Phys. Rev. Let

    Semiclassical evaluation of average nuclear one and two body matrix elements

    Get PDF
    Thomas-Fermi theory is developed to evaluate nuclear matrix elements averaged on the energy shell, on the basis of independent particle Hamiltonians. One- and two-body matrix elements are compared with the quantal results and it is demonstrated that the semiclassical matrix elements, as function of energy, well pass through the average of the scattered quantum values. For the one-body matrix elements it is shown how the Thomas-Fermi approach can be projected on good parity and also on good angular momentum. For the two-body case the pairing matrix elements are considered explicitly.Comment: 15 pages, REVTeX, 6 ps figures; changed conten

    Production of J/ψJ/\psi-pairs at HERA-N\vec{{\rm N}}

    Full text link
    The production of J/ψJ/\psi-pairs as a possible measure of the polarized gluon distribution ΔG(x)\Delta G(x) is studied for proton--nucleon collisions at \sqrt{s} =40\;\mbox{GeV}^2 (HERA-N\vec{{\rm N}}). Possibilities of reconstructing the helicity state of at least one of the J/ψJ/\psi's are critically reviewed. The observation of production asymmetries in the single polarized mode of HERA-N\vec{{\rm N}} is found to be not feasible.Comment: 8 pages, LATeX, 3 figures availabe as .uu-fil
    corecore