257 research outputs found

    Campylobacter jejuni Type VI Secretion System: Roles in Adaptation to Deoxycholic Acid, Host Cell Adherence, Invasion, and In Vivo Colonization

    Get PDF
    The recently identified type VI secretion system (T6SS) of proteobacteria has been shown to promote pathogenicity, competitive advantage over competing microorganisms, and adaptation to environmental perturbation. By detailed phenotypic characterization of loss-of-function mutants, in silico, in vitro and in vivo analyses, we provide evidence that the enteric pathogen, Campylobacter jejuni, possesses a functional T6SS and that the secretion system exerts pleiotropic effects on two crucial processes – survival in a bile salt, deoxycholic acid (DCA), and host cell adherence and invasion. The expression of T6SS during initial exposure to the upper range of physiological levels of DCA (0.075%–0.2%) was detrimental to C. jejuni proliferation, whereas down-regulation or inactivation of T6SS enabled C. jejuni to resist this effect. The C. jejuni multidrug efflux transporter gene, cmeA, was significantly up-regulated during the initial exposure to DCA in the wild type C. jejuni relative to the T6SS-deficient strains, suggesting that inhibition of proliferation is the consequence of T6SS-mediated DCA influx. A sequential modulation of the efflux transporter activity and the T6SS represents, in part, an adaptive mechanism for C. jejuni to overcome this inhibitory effect, thereby ensuring its survival. C. jejuni T6SS plays important roles in host cell adhesion and invasion as T6SS inactivation resulted in a reduction of adherence to and invasion of in vitro cell lines, while over-expression of a hemolysin co-regulated protein, which encodes a secreted T6SS component, greatly enhanced these processes. When inoculated into B6.129P2-IL-10[superscript tm1Cgn] mice, the T6SS-deficient C. jejuni strains did not effectively establish persistent colonization, indicating that T6SS contributes to colonization in vivo. Taken together, our data demonstrate the importance of bacterial T6SS in host cell adhesion, invasion, colonization and, for the first time to our knowledge, adaptation to DCA, providing new insights into the role of T6SS in C. jejuni pathogenesis

    NikR mediates nickel-responsive transcriptional induction of urease expression in Helicobacter pylori

    Get PDF
    The important human pathogen Helicobacter pylori requires the abundant expression and activity of its urease enzyme for colonization of the gastric mucosa. The transcription, expression, and activity of H. pylori urease were previously demonstrated to be induced by nickel supplementation of growth media. Here it is demonstrated that the HP1338 protein, an ortholog of the Escherichia coli nickel regulatory protein NikR, mediates nickel-responsive induction of urease expression in H. pylori. Mutation of the HP1338 gene (nikR) of H. pylori strain 26695 resulted in significant growth inhibition of the nikR mutant in the presence of supplementation with NiCl(2) at > or =100 microM, whereas the wild-type strain tolerated more than 10-fold-higher levels of NiCl(2). Mutation of nikR did not affect urease subunit expression or urease enzyme activity in unsupplemented growth media. However, the nickel-induced increase in urease subunit expression and urease enzyme activity observed in wild-type H. pylori was absent in the H. pylori nikR mutant. A similar lack of nickel responsiveness was observed upon removal of a 19-bp palindromic sequence in the ureA promoter, as demonstrated by using a genomic ureA::lacZ reporter gene fusion. In conclusion, the H. pylori NikR protein and a 19-bp operator sequence in the ureA promoter are both essential for nickel-responsive induction of urease expression in H. pylori

    Transcriptional profiling of Helicobacter pylori Fur- and iron-regulated gene expression

    Get PDF
    Intracellular iron homeostasis is a necessity for almost all living organisms, since both iron restriction and iron overload can result in cell death. The ferric uptake regulator protein, Fur, controls iron homeostasis in most Gram-negative bacteria. In the human gastric pathogen Helicobacter pylori, Fur is thought to have acquired extra functions to compensate for the relative paucity of regulatory genes. To identify H. pylori genes regulated by iron and Fur, we used DNA array-based transcriptional profiling with RNA isolated from H. pylori 26695 wild-type and fur mutant cells grown in iron-restricted and iron-replete conditions. Sixteen genes encoding proteins involved in metal metabolism, nitrogen metabolism, motility, cell wall synthesis and cofactor synthesis displayed iron-dependent Fur-repressed expression. Conversely, 16 genes encoding proteins involved in iron storage, respiration, energy metabolism, chemotaxis, and oxygen scavenging displayed iron-induced Fur-dependent expression. Several Fur-regulated genes have been previously shown to be essential for acid resistance or gastric colonization in animal models, such as those encoding the hydrogenase and superoxide dismutase enzymes. Overall, there was a partial overlap between the sets of genes regulated by Fur and those previously identified as growth-phase, iron or acid regulated. Regulatory patterns were confirmed for five selected genes using Northern hybridization. In conclusion, H. pylori Fur is a versatile regulator involved in many pathways essential for gastric colonization. These findings further delineate the central role of Fur in regulating the unique capacity of H. pylori to colonize the human stomach

    The selective phosphodiesterase 4 inhibitor roflumilast and phosphodiesterase 3/4 inhibitor pumafentrine reduce clinical score and TNF expression in experimental colitis in mice.

    Get PDF
    The specific inhibition of phosphodiesterase (PDE)4 and dual inhibition of PDE3 and PDE4 has been shown to decrease inflammation by suppression of pro-inflammatory cytokine synthesis. We examined the effect of roflumilast, a selective PDE4 inhibitor marketed for severe COPD, and the investigational compound pumafentrine, a dual PDE3/PDE4 inhibitor, in the preventive dextran sodium sulfate (DSS)-induced colitis model. The clinical score, colon length, histologic score and colon cytokine production from mice with DSS-induced colitis (3.5% DSS in drinking water for 11 days) receiving either roflumilast (1 or 5 mg/kg body weight/d p.o.) or pumafentrine (1.5 or 5 mg/kg/d p.o.) were determined and compared to vehicle treated control mice. In the pumafentrine-treated animals, splenocytes were analyzed for interferon-γ (IFNγ) production and CD69 expression. Roflumilast treatment resulted in dose-dependent improvements of clinical score (weight loss, stool consistency and bleeding), colon length, and local tumor necrosis factor-α (TNFα) production in the colonic tissue. These findings, however, were not associated with an improvement of the histologic score. Administration of pumafentrine at 5 mg/kg/d alleviated the clinical score, the colon length shortening, and local TNFα production. In vitro stimulated splenocytes after in vivo treatment with pumafentrine showed a significantly lower state of activation and production of IFNγ compared to no treatment in vivo. These series of experiments document the ameliorating effect of roflumilast and pumafentrine on the clinical score and TNF expression of experimental colitis in mice

    The Intestinal Flora Is Required to Support Antibody Responses to Systemic Immunization in Infant and Germ Free Mice

    Get PDF
    The presence of a complex and diverse intestinal flora is functionally important for regulating intestinal mucosal immune responses. However, the extent to which a balanced intestinal flora regulates systemic immune responses is still being defined. In order to specifically examine whether the acquisition of a less complex flora influences responses to immunization in the pre-weaning stages of life, we utilize a model in which infant mice acquire an intestinal flora from their mothers that has been altered by broad-spectrum antibiotics. In this model, pregnant dams are treated with a cocktail of antibiotics that alters both the density and microbial diversity of the intestinal flora. After challenge with a subcutaneous immunization, the antibiotic altered flora infant mice have lower antigen specific antibody titers compared to control age-matched mice. In a second model, we examined germ free (GF) mice to analyze how the complete lack of flora influences the ability to mount normal antibody responses following subcutaneous immunization. GF mice do not respond well to immunization and introduction of a normal flora into GF mice restores the capacity of these mice to respond. These results indicate that a gastrointestinal flora reduced in density and complexity at critical time points during development adversely impacts immune responses to systemic antigens

    The role of the ferric uptake regulator (Fur) in regulation of Helicobacter pylori iron uptake

    Get PDF
    Background. Availability of the essential nutrient iron is thought to vary greatly in the gastric mucosa, and thus the human gastric pathogen Helicobacter pylori requires regulatory responses to these environmental changes. Bacterial iron-responsive regulation is often mediated by Ferric Uptake Regulator (Fur) homologs, and in this study we have determined the role of H. pylori Fur in regulation of H. pylori iron uptake. Methods. Wild-type H. pylori and fur mutant derivatives were compared after growth in ironrestricted and iron-replete conditions. Iron-uptake was measured using 55Fe-labeled iron, whereas gene expression was mon

    Patent Human Infections with the Whipworm, Trichuris trichiura, Are Not Associated with Alterations in the Faecal Microbiota

    Get PDF
    Background: The soil-transmitted helminth (STH), Trichuris trichiura colonises the human large intestine where it may modify inflammatory responses, an effect possibly mediated through alterations in the intestinal microbiota. We hypothesised that patent T. trichiura infections would be associated with altered faecal microbiota and that anthelmintic treatment would induce a microbiota resembling more closely that observed in uninfected individuals. Materials and Methods: School children in Ecuador were screened for STH infections and allocated to 3 groups: uninfected, T. trichiura only, and mixed infections with T. trichiura and Ascaris lumbricoides. A sample of uninfected children and those with T. trichiura infections only were given anthelmintic treatment. Bacterial community profiles in faecal samples were studied by 454 pyrosequencing of 16 S rRNA genes. Results: Microbiota analyses of faeces were done for 97 children: 30 were uninfected, 17 were infected with T. trichiura, and 50 with T. trichiura and A. lumbricoides. Post-treatment samples were analyzed for 14 children initially infected with T. trichiura alone and for 21 uninfected children. Treatment resulted in 100% cure of STH infections. Comparisons of the microbiota at different taxonomic levels showed no statistically significant differences in composition between uninfected children and those with T. trichiura infections. We observed a decreased proportional abundance of a few bacterial genera from the Clostridia class of Firmicutes and a reduced bacterial diversity among children with mixed infections compared to the other two groups, indicating a possible specific effect of A. lumbricoides infection. Anthelmintic treatment of children with T. trichiura did not alter faecal microbiota composition. Discussion: Our data indicate that patent human infections with T. trichiura may have no effect on faecal microbiota but that A. lumbricoides colonisation might be associated with a disturbed microbiota. Our results also catalogue the microbiota of rural Ecuadorians and indicate differences with individuals from more urban industrialised societies

    Oral treatment of human gut microbiota associated IL-10−/− mice suffering from acute campylobacteriosis with carvacrol, deferoxamine, deoxycholic acid, and 2-fucosyl-lactose

    Get PDF
    Food-borne Campylobacter jejuni infections constitute serious threats to human health worldwide. Since antibiotic treatment is usually not indicated in infected immune-competent patients, antibiotic-independent treatment approaches are needed to tackle campylobacteriosis. To address this, we orally applied carvacrol, deferoxamine, deoxycholate, and 2-fucosyl-lactose either alone or all in combination to human microbiota-associated IL-10(-/-) mice from day 2 until day 6 following oral C. jejuni infection. Neither treatment regimen affected C. jejuni loads in the colon, whereas carvacrol lowered the pathogen numbers in the ileum on day 6 post-infection (p.i.). The carvacrol and combination treatment regimens resulted in alleviated diarrheal symptoms, less distinct histopathological and apoptotic epithelial cell responses in the colon, as well as diminished numbers of colonic neutrophils and T lymphocytes on day 6 p.i., whereas the latter cells were also decreased upon deferoxamine, deoxycholate, or 2-fucosyl-lactose application. Remarkably, the carvacrol, deferoxamine, and combination treatment regimens dampened ex-vivo IFN-gamma secretion in the colon, the kidneys, and even in the serum to basal concentrations on day 6 p.i. In conclusion, carvacrol alone and its combination with deferoxamine, deoxycholate, and 2-fucosyl-lactose constitute promising antibiotics-independent treatment options to fight acute campylobacteriosis

    Nucleotide-Oligomerization-Domain-2 Affects Commensal Gut Microbiota Composition and Intracerebral Immunopathology in Acute Toxoplasma gondii Induced Murine Ileitis

    Get PDF
    Background Within one week following peroral high dose infection with Toxoplasma (T.) gondii, susceptible mice develop non-selflimiting acute ileitis due to an underlying Th1-type immunopathology. The role of the innate immune receptor nucleotide-oligomerization-domain-2 (NOD2) in mediating potential extra-intestinal inflammatory sequelae including the brain, however, has not been investigated so far. Methodology/Principal Findings Following peroral infection with 100 cysts of T. gondii strain ME49, NOD2-/- mice displayed more severe ileitis and higher small intestinal parasitic loads as compared to wildtype (WT) mice. However, systemic (i.e. splenic) levels of pro-inflammatory cytokines such as TNF-α and IFN-γ were lower in NOD2-/- mice versus WT controls at day 7 p.i. Given that the immunopathological outcome might be influenced by the intestinal microbiota composition, which is shaped by NOD2, we performed a quantitative survey of main intestinal bacterial groups by 16S rRNA analysis. Interestingly, Bifidobacteria were virtually absent in NOD2-/- but not WT mice, whereas differences in remaining bacterial species were rather subtle. Interestingly, more distinct intestinal inflammation was accompanied by higher bacterial translocation rates to extra- intestinal tissue sites such as liver, spleen, and kidneys in T. gondii infected NOD2-/- mice. Strikingly, intracerebral inflammatory foci could be observed as early as seven days following T. gondii infection irrespective of the genotype of animals, whereas NOD2-/- mice exhibited higher intracerebral parasitic loads, higher F4/80 positive macrophage and microglia numbers as well as higher IFN-γ mRNA expression levels as compared to WT control animals. Conclusion/Significance NOD2 signaling is involved in protection of mice from T. gondii induced acute ileitis. The parasite-induced Th1-type immunopathology at intestinal as well as extra-intestinal sites including the brain is modulated in a NOD2-dependent manner
    corecore