25 research outputs found

    Low pre-stimulus EEG alpha power amplifies visual awareness but not visual sensitivity

    Get PDF
    Pre‐stimulus oscillatory neural activity has been linked to the level of awareness of sensory stimuli. More specifically, the power of low frequency oscillations (primarily in the alpha‐band, i.e. 8‐14 Hz) prior to stimulus‐onset is inversely related to measures of subjective performance in visual tasks, such as confidence and visual awareness. Intriguingly, the same EEG‐signature does not seem to influence objective measures of task performance (i.e. accuracy). We here examined whether this dissociation holds when stringent accuracy measures are used. Previous EEG‐studies have employed 2‐alternative forced‐choice (2‐AFC) discrimination tasks to link pre‐stimulus oscillatory activity to correct/incorrect responses as an index of accuracy/objective performance at the single‐trial level. However, 2‐AFC tasks do not provide a good estimate of single‐trial accuracy, as many of the responses classified as correct will be contaminated by guesses (with the chance correct response rate being 50%). Here instead, we employed a 19‐AFC letter identification task to measure accuracy and the subjectively reported level of perceptual awareness on each trial. As the correct guess rate is negligible (~5%), this task provides a purer measure of accuracy. Our results replicate the inverse relationship between pre‐stimulus alpha/beta‐band power and perceptual awareness ratings in the absence of a link to discrimination accuracy. Pre‐stimulus oscillatory phase did not predict either subjective awareness or accuracy. Our results hence confirm a dissociation of the pre‐stimulus EEG power ‐ task performance link for subjective versus objective measures of performance, and further substantiate pre‐stimulus alpha power as a neural predictor of visual awareness

    Trial-by-trial co-variation of pre-stimulus EEG alpha power and visuospatial bias reflects a mixture of stochastic and deterministic effects

    Get PDF
    Human perception of perithreshold stimuli critically depends on oscillatory EEG activity prior to stimulus onset. However, it remains unclear exactly which aspects of perception are shaped by this pre‐stimulus activity and what role stochastic (trial‐by‐trial) variability plays in driving these relationships. We employed a novel jackknife approach to link single‐trial variability in oscillatory activity to psychometric measures from a task that requires judgement of the relative length of two line segments (the landmark task). The results provide evidence that pre‐stimulus alpha fluctuations influence perceptual bias. Importantly, a mediation analysis showed that this relationship is partially driven by long‐term (deterministic) alpha changes over time, highlighting the need to account for sources of trial‐by‐trial variability when interpreting EEG predictors of perception. These results provide fundamental insight into the nature of the effects of ongoing oscillatory activity on perception. The jackknife approach we implemented may serve to identify and investigate neural signatures of perceptual relevance in more detail

    Stimulus-Driven Brain Rhythms within the Alpha Band: The Attentional-Modulation Conundrum

    Get PDF
    Two largely independent research lines use rhythmic sensory stimulation to study visual processing. Despite the use of strikingly similar experimental paradigms, they differ crucially in their notion of the stimulus-driven periodic brain responses: one regards them mostly as synchronized (entrained) intrinsic brain rhythms; the other assumes they are predominantly evoked responses [classically termed steady-state responses (SSRs)] that add to the ongoing brain activity. This conceptual difference can produce contradictory predictions about, and interpretations of, experimental outcomes. The effect of spatial attention on brain rhythms in the alpha band (8–13 Hz) is one such instance: alpha-range SSRs have typically been found to increase in power when participants focus their spatial attention on laterally presented stimuli, in line with a gain control of the visual evoked response. In nearly identical experiments, retinotopic decreases in entrained alpha-band power have been reported, in line with the inhibitory function of intrinsic alpha. Here we reconcile these contradictory findings by showing that they result from a small but far-reaching difference between two common approaches to EEG spectral decomposition. In a new analysis of previously published human EEG data, recorded during bilateral rhythmic visual stimulation, we find the typical SSR gain effect when emphasizing stimulus-locked neural activity and the typical retinotopic alpha suppression when focusing on ongoing rhythms. These opposite but parallel effects suggest that spatial attention may bias the neural processing of dynamic visual stimulation via two complementary neural mechanisms

    Prestimulus EEG power predicts conscious awareness but not objective visual performance

    Get PDF
    Prestimulus oscillatory neural activity has been linked to perceptual outcomes during performance of psychophysical detection and discrimination tasks. Specifically, the power and phase of low frequency oscillations have been found to predict whether an upcoming weak visual target will be detected or not. However, the mechanisms by which baseline oscillatory activity influences perception remain unclear. Recent studies suggest that the frequently reported negative relationship between power and stimulus detection may be explained by changes in detection criterion (i.e., increased target present responses regardless of whether the target was present/absent) driven by the state of neural excitability, rather than changes in visual sensitivity (i.e., more veridical percepts). Here, we recorded EEG while human participants performed a luminance discrimination task on perithreshold stimuli in combination with single-trial ratings of perceptual awareness. Our aim was to investigate whether the power and/or phase of prestimulus oscillatory activity predict discrimination accuracy and/or perceptual awareness on a trial-by-trial basis. Prestimulus power (3–28 Hz) was inversely related to perceptual awareness ratings (i.e., higher ratings in states of low prestimulus power/high excitability) but did not predict discrimination accuracy. In contrast, prestimulus oscillatory phase did not predict awareness ratings or accuracy in any frequency band. These results provide evidence that prestimulus power influences the level of subjective awareness of threshold visual stimuli but does not influence visual sensitivity when a decision has to be made regarding stimulus features. Hence, we find a clear dissociation between the influence of ongoing neural activity on conscious awareness and objective performance

    Measuring recovery capital for people recovering from alcohol and drug addiction:A systematic review

    Get PDF
    Background: Recovery capital (RC) theory provides a biopsychosocial framework for identifying and measuring strengths and barriers that can be targeted to support recovery from alcohol and drug addiction. This systematic review analyzed and synthesized all quantitative approaches that have been used to measured recovery capital RC in the recent literaturesince 2016.Method: Systematic database searches were conducted in three databases to identifyThe reviewed studies were published from 2016 to 2023, . Eligible studiesand explicitly stated they measured RC recovery capital in participants recovering from alcohol and/or drug addiction. Studies focusing on other forms of addiction were excluded.Results: Sixty-nine studies met the inclusion criteria. Forty-six studies (66.7%) used one of the ten identified RC recovery capital questionnaires, and twenty-five studies (36.2%) used a measurement approach other than one of the ten RC recovery capital questionnaires. The ten RC recovery capital questionnaires are primarily developed for adult populations across clinical and community recovery settings, and between them measuredwere identified to measure altogether 41 separate RC recovery capital constructs. They, and are generally considered valid and reliable measures of RCrecovery capital. Nevertheless, a strong evidence base on the psychometric properties across diverse populations and settings is still needs to be established for all RC these questionnaires. Conclusion: The development of RC recovery capital questionnaires has been a significant advance in the addiction recovery field, in alignment with the modern emerging recovery-oriented approach to addiction recovery care. Additionally, the non-RC recovery capital questionnaire-based approaches to RC recovery capital measurement have an important place in the field. They could be used alongside RC recovery capital questionnaires to test RC theory, and in contexts where the application of the RC questionnaires is not feasible, such as analyses of data from online recovery forums

    No interaction between tDCS current strength and baseline performance: a conceptual replication

    Get PDF
    Several recent studies have reported non-linear effects of transcranial direct current stimulation (tDCS), which has been attributed to an interaction between the stimulation parameters (e.g., current strength, duration) and the neural state of the cortex being stimulated (e.g., indexed by baseline performance ability, age) (see Fertonani and Miniussi, 2016). We have recently described one such non-linear interaction between current strength and baseline performance on a visuospatial attention (landmark) task (Benwell et al., 2015). In this previous study, we induced a small overall rightward shift of spatial attention across 38 participants using bi-hemispheric tDCS applied for 20 min (concurrent left posterior parietal (P5) anode and right posterior parietal (P6) cathode) relative to a sham protocol. Importantly, this shift in bias was driven by a state-dependent interaction between current intensity and the discrimination sensitivity of the participant at baseline (pre-stimulation) for the landmark task. Individuals with high discrimination sensitivity (HDS) shifted rightward in response to low- (1 mA) but not high-intensity (2 mA) tDCS, whereas individuals with low discrimination sensitivity (LDS) shifted rightward with high- but not low-intensity stimulation. However, in Benwell et al. (2015) current strength was applied as a between-groups factor, where half of the participants received 1 mA and half received 2 mA tDCS, thus we were unable to compare high and low-intensity tDCS directly within each individual. Here we aimed to replicate these findings using a within-group design. Thirty young adults received 15 min of 1 and 2 mA tDCS, and a sham protocol, each on different days, to test the concept of an interaction between baseline performance and current strength. We found no overall rightward shift of spatial attention with either current strength, and no interaction between performance and current strength. These results provide further evidence of low replicability of non-invasive brain stimulation protocols, and the need for further attempts to replicate the key experimental findings within this field

    Non-invasive brain stimulation in Stroke patients (NIBS):A prospective randomized open blinded end-point (PROBE) feasibility trial using transcranial direct current stimulation (tDCS) in post-stroke hemispatial neglect

    Get PDF
    Up to 80% of people who experience a right-hemisphere stroke suffer from hemispatial neglect. This syndrome is debilitating and impedes rehabilitation. We carried out a clinical feasibility trial of transcranial direct current stimulation (tDCS) and a behavioural rehabilitation programme, alone or in combination, in patients with neglect. Patients >4 weeks post right hemisphere stroke were randomized to 10 sessions of tDCS, 10 sessions of a behavioural intervention, combined intervention, or a control task. Primary outcomes were recruitment and retention rates, with secondary outcomes effect sizes on measures of neglect and quality of life, assessed directly after the interventions, and at 6 months follow up. Of 288 confirmed stroke cases referred (representing 7% of confirmed strokes), we randomized 8% (0.6% of stroke cases overall). The largest number of exclusions (91/288 (34%)) were due to medical comorbidities that prevented patients from undergoing 10 intervention sessions. We recruited 24 patients over 29 months, with 87% completing immediate post-intervention and 67% 6 month evaluations. We established poor feasibility of a clinical trial requiring repeated hospital-based tDCS within a UK hospital healthcare setting, either with or without behavioural training, over a sustained time period. Future trials should consider intensity, duration and location of tDCS neglect interventions

    Reliability of resting-state EEG modulation by continuous and intermittent theta burst stimulation of the primary motor cortex:a sham-controlled study

    Get PDF
    Theta burst stimulation (TBS) is a form of repetitive transcranial magnetic stimulation designed to induce changes of cortical excitability that outlast the period of TBS application. In this study, we explored the effects of continuous TBS (cTBS) and intermittent TBS (iTBS) versus sham TBS stimulation, applied to the left primary motor cortex, on modulation of resting state electroencephalography (rsEEG) power. We first conducted hypothesis-driven region-of-interest (ROI) analyses examining changes in alpha (8-12 Hz) and beta (13-21 Hz) bands over the left and right motor cortex. Additionally, we performed data-driven whole-brain analyses across a wide range of frequencies (1-50 Hz) and all electrodes. Finally, we assessed the reliability of TBS effects across two sessions approximately 1 month apart. None of the protocols produced significant group-level effects in the ROI. Whole-brain analysis revealed that cTBS significantly enhanced relative power between 19 and 43 Hz over multiple sites in both hemispheres. However, these results were not reliable across visits. There were no significant differences between EEG modulation by active and sham TBS protocols. Between-visit reliability of TBS-induced neuromodulatory effects was generally low-to-moderate. We discuss confounding factors and potential approaches for improving the reliability of TBS-induced rsEEG modulation.</p

    No Interaction between tDCS Current Strength and Baseline Performance:A Conceptual Replication

    Get PDF
    Several recent studies have reported non-linear effects of transcranial direct current stimulation (tDCS), which has been attributed to an interaction between the stimulation parameters (e.g., current strength, duration) and the neural state of the cortex being stimulated (e.g., indexed by baseline performance ability, age) (see Fertonani and Miniussi, 2016). We have recently described one such non-linear interaction between current strength and baseline performance on a visuospatial attention (landmark) task (Benwell et al., 2015). In this previous study, we induced a small overall rightward shift of spatial attention across 38 participants using bi-hemispheric tDCS applied for 20 min (concurrent left posterior parietal (P5) anode and right posterior parietal (P6) cathode) relative to a sham protocol. Importantly, this shift in bias was driven by a state-dependent interaction between current intensity and the discrimination sensitivity of the participant at baseline (pre-stimulation) for the landmark task. Individuals with high discrimination sensitivity (HDS) shifted rightward in response to low- (1 mA) but not high-intensity (2 mA) tDCS, whereas individuals with low discrimination sensitivity (LDS) shifted rightward with high- but not low-intensity stimulation. However, in Benwell et al. (2015) current strength was applied as a between-groups factor, where half of the participants received 1 mA and half received 2 mA tDCS, thus we were unable to compare high and low-intensity tDCS directly within each individual. Here we aimed to replicate these findings using a within-group design. Thirty young adults received 15 min of 1 and 2 mA tDCS, and a sham protocol, each on different days, to test the concept of an interaction between baseline performance and current strength. We found no overall rightward shift of spatial attention with either current strength, and no interaction between performance and current strength. These results provide further evidence of low replicability of non-invasive brain stimulation protocols, and the need for further attempts to replicate the key experimental findings within this field

    Resting-state EEG signatures of Alzheimer's disease are driven by periodic but not aperiodic changes

    Get PDF
    Electroencephalography (EEG) has shown potential for identifying early-stage biomarkers of neurocognitive dysfunction associated with dementia due to Alzheimer's disease (AD). A large body of evidence shows that, compared to healthy controls (HC), AD is associated with power increases in lower EEG frequencies (delta and theta) and decreases in higher frequencies (alpha and beta), together with slowing of the peak alpha frequency. However, the pathophysiological processes underlying these changes remain unclear. For instance, recent studies have shown that apparent shifts in EEG power from high to low frequencies can be driven either by frequency specific periodic power changes or rather by non-oscillatory (aperiodic) changes in the underlying 1/f slope of the power spectrum. Hence, to clarify the mechanism(s) underlying the EEG alterations associated with AD, it is necessary to account for both periodic and aperiodic characteristics of the EEG signal. Across two independent datasets, we examined whether resting-state EEG changes linked to AD reflect true oscillatory (periodic) changes, changes in the aperiodic (non-oscillatory) signal, or a combination of both. We found strong evidence that the alterations are purely periodic in nature, with decreases in oscillatory power at alpha and beta frequencies (AD &lt; HC) leading to lower (alpha + beta) / (delta + theta) power ratios in AD. Aperiodic EEG features did not differ between AD and HC. By replicating the findings in two cohorts, we provide robust evidence for purely oscillatory pathophysiology in AD and against aperiodic EEG changes. We therefore clarify the alterations underlying the neural dynamics in AD and emphasize the robustness of oscillatory AD signatures, which may further be used as potential prognostic or interventional targets in future clinical investigations.</p
    corecore