
                                                                    

University of Dundee

Low pre-stimulus EEG alpha power amplifies visual awareness but not visual
sensitivity
Benwell, Christopher S. Y.; Coldea, Andra; Harvey, Monika; Thut, Gregor

Published in:
European Journal of Neuroscience

DOI:
10.1111/ejn.15166

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Benwell, C. S. Y., Coldea, A., Harvey, M., & Thut, G. (2021). Low pre-stimulus EEG alpha power amplifies visual
awareness but not visual sensitivity. European Journal of Neuroscience. https://doi.org/10.1111/ejn.15166

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 20. Apr. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dundee Online Publications

https://core.ac.uk/display/390061099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1111/ejn.15166
https://discovery.dundee.ac.uk/en/publications/32a21329-ff91-4127-b670-5af8fd38e15f
https://doi.org/10.1111/ejn.15166


Eur J Neurosci. 2021;00:1–16.	﻿	     |  1wileyonlinelibrary.com/journal/ejn

Received: 19 June 2020  |  Revised: 28 January 2021

DOI: 10.1111/ejn.15166  

S P E C I A L  I S S U E  A R T I C L E
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Abstract
Pre-stimulus oscillatory neural activity has been linked to the level of awareness of 
sensory stimuli. More specifically, the power of low-frequency oscillations (primar-
ily in the alpha-band, i.e., 8–14 Hz) prior to stimulus onset is inversely related to 
measures of subjective performance in visual tasks, such as confidence and visual 
awareness. Intriguingly, the same EEG signature does not seem to influence objec-
tive measures of task performance (i.e., accuracy). We here examined whether this 
dissociation holds when stringent accuracy measures are used. Previous EEG-studies 
have employed 2-alternative forced choice (2-AFC) discrimination tasks to link pre-
stimulus oscillatory activity to correct/incorrect responses as an index of accuracy/
objective performance at the single-trial level. However, 2-AFC tasks do not provide 
a good estimate of single-trial accuracy, as many of the responses classified as cor-
rect will be contaminated by guesses (with the chance correct response rate being 
50%). Here instead, we employed a 19-AFC letter identification task to measure 
accuracy and the subjectively reported level of perceptual awareness on each trial. 
As the correct guess rate is negligible (~5%), this task provides a purer measure of 
accuracy. Our results replicate the inverse relationship between pre-stimulus alpha/
beta-band power and perceptual awareness ratings in the absence of a link to dis-
crimination accuracy. Pre-stimulus oscillatory phase did not predict either subjective 
awareness or accuracy. Our results hence confirm a dissociation of the pre-stimulus 
EEG power–task performance link for subjective versus objective measures of per-
formance, and further substantiate pre-stimulus alpha power as a neural predictor of 
visual awareness.
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1  |   INTRODUCTION

Discovering the neural mechanisms underlying percep-
tion remains a fundamental challenge for neuroscience. A 
growing body of evidence suggests that neural oscillations 
in specific frequency bands, as measured on the scalp using 
electroencephalography (EEG), may play a functional role 
in various perceptual processes (Bonnefond et  al.,  2017; 
Fries, 2015; Gallotto et al., 2017; Keitel et al., 2018; Salinas & 
Sejnowski, 2001; Siegel et al., 2012; Thut et al., 2012; Varela 
et al., 2001). For instance, alpha-band (8–12 Hz) power prior 
to stimulus onset has consistently been shown to predict the 
likelihood of reporting the presence of a stimulus during de-
tection tasks, with detection reports more likely in states of 
low alpha-power preceding stimulus onset (Busch et al., 2009; 
Chaumon & Busch,  2014; Ergenoglu et  al.,  2004; Iemi & 
Busch,  2018; Iemi et  al.,  2017; Kloosterman et  al.,  2019; 
Limbach & Corballis, 2016; Ruzzoli et al., 2019). In order 
to establish a theoretical underpinning of how fluctuations 
in alpha power relate to changes in perceptual performance, 
studies have recently started implementing psychophysical 
modelling techniques. One such formal framework comes 
from signal detection theory (SDT; Green & Swets,  1966; 
Macmillan & Creelman, 2005), whereby pre-stimulus alpha 
power could affect performance in the task by either (i) 
changing perceptual sensitivity to the target stimulus (i.e., 
the ability to detect/discriminate the veridical target) and/
or by (ii) changing the decision criterion of the participant 
(or the internal representation of the target stimulus) and 
subsequently biasing responses. Iemi and colleagues (2017) 
proposed that if decreases in alpha power reflect an increase 
in global baseline excitability levels (see also evidence from 
transcranial magnetic stimulation [TMS]-EEG studies; 
Dugué et al., 2011; Romei et al., 2008; Samaha et al., 2017), 
then low alpha power may lead to a more liberal decision 
criterion, leaving perceptual sensitivity unaffected. In line 
with this view, a number of recent studies have shown that 
pre-stimulus alpha power influences the decision criterion 
and covaries with subjective measures of task performance 
(i.e., confidence and perceptual awareness) but not objective 
measures such as accuracy (Lange et al., 2013; Limbach & 
Corballis, 2016; Craddock et al., 2017; Iemi et al., 2017; Iemi 
& Busch, 2017; Samaha et  al., 2017; Benwell et  al., 2018; 
Kloosterman et  al.,  2019; Wöstmann et  al.,  2019; Samaha 
et al., 2020; see Samaha et al., 2020, for a review). Moreover, 
it has recently been shown that a more liberal decision cri-
terion can be induced experimentally by using different 
stimulus-response reward contingencies, which results in 
a suppression of pre-stimulus alpha power (Kloosterman 
et al., 2019).

In line with these findings, we have recently shown that 
pre-stimulus EEG-power in the alpha/beta-bands over pos-
terior sites inversely correlates with the level of subjective 

perceptual awareness of an upcoming threshold stimulus but 
does not predict objective performance (accuracy) when a 
decision has to be made regarding visual stimulus features 
(Benwell et al., 2017). Furthermore, we have found this re-
lationship to be dependent on the stimulus being present and 
visible, consistent with a bias induced at the level of the per-
ceptual experience rather than the decisional process per se 
(Chaumon & Busch,  2014; Iemi & Busch,  2017; Samaha, 
Iemi, et  al.,  2020). Here, we sought to replicate our previ-
ous findings (Benwell et al., 2017) in a larger sample of par-
ticipants and using a different task, implemented to obtain 
a purer measure of objective task accuracy. In our previous 
experiment, we employed a 2-alternative forced choice (2-
AFC) luminance discrimination task (Benwell et al., 2017). 
However, 2-AFC tasks have a 50% correct guess rate by 
chance, meaning that many ‘correct’ responses will be con-
taminated by guesses when typical peri-threshold stimuli 
are used. As a consequence, a trial-by-trial relationship be-
tween true performance accuracy and EEG measures may be 
more difficult to detect. Here, we employed a masked letter 
identification task using 19 different letters, in combination 
with single-trial ratings of perceptual awareness (Ramsøy & 
Overgaard, 2004). This 19-AFC task provides a purer mea-
sure of accuracy, because contamination by guesses is ren-
dered negligible (~5% correct responses expected by chance). 
By introducing a purer measure of accuracy, we sought to 
implement a more rigorous test for a dissociation between 
objective and subjective aspects of visual task performance.

Based on our previous results, we hypothesized that pre-
stimulus power would negatively predict subjective awareness 
ratings, but not discrimination accuracy. Additionally, we in-
vestigated the relationship between pre-stimulus oscillatory 
phase and perception, for which current evidence is mixed. 
Whilst many studies have linked the phase of oscillatory ac-
tivity in specific frequency bands (before or during stimu-
lus onset) to the likelihood of perception (Busch et al., 2009; 
Busch & VanRullen, 2010; Mathewson et al., 2009; Samaha 
et al., 2015), others have been unable to replicate these find-
ings (Benwell et al., 2017; van Diepen et al., 2015; Ruzzoli 
et  al.,  2019; Vigué-Guix et  al.,  2020; see also Brüers & 
VanRullen, 2017). Together, our analyses aim to contribute 
to the understanding of the mechanisms by which baseline 
neural activity impacts visual perception.

2  |   MATERIALS AND METHODS

2.1  |  Participants

Twenty-two participants (17 females, mean 
age = 22.9 years, min = 18, max = 29) were recruited for 
the study. All reported normal or corrected-to-normal vi-
sion and no history of neurological or psychiatric disorders. 
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Each participant gave written informed consent and re-
ceived monetary compensation for their participation in the 
study. The study was approved by the Ethics Committee of 
the College of Science and Engineering at the University 
of Glasgow. The experimental sessions were carried out 
within the Institute of Neuroscience and Psychology at the 
University of Glasgow.

2.2  |  Task and experimental procedure

The task involved the identification of a briefly presented 
masked letter along with a subsequent rating of the level of 
awareness of the letter. The visual stimuli were presented on a 
CRT monitor (1,280 × 1,024 pixel resolution, 100-Hz refresh 
rate, viewing distance 57 cm) using E-Prime software (Version 
2.0; Pittsburgh, Pennsylvania). Each trial (see Figure 1a) began 
with a white fixation cross presented on a grey background at 
the centre of the screen for a duration randomly varying be-
tween 2,500 and 3,000 ms. This was followed by presentation 
of a white target letter (subtending 2.2° visual angle) for one 
of five possible exposure durations (10, 20, 30, 40 or 50 ms). 

The letter was randomly selected on each trial from a set of 
19 consonants (BCDFGHJKLNPQRSTVXYZ). The letter was 
immediately followed by a patterned mask which consisted 
of all letters superimposed for 200  ms. After a delay period 
of 500 ms during which a blank screen was presented, partici-
pants were asked to indicate which letter they had perceived by 
pressing the corresponding letter key on a standard keyboard 
using their right index finger. Participants were instructed to 
guess if they had not perceived any letter. Immediately follow-
ing the response, participants were asked to rate the clarity of 
their experience of the letter using the perceptual awareness 
scale (PAS; Ramsøy & Overgaard, 2004). The PAS scale con-
sisted of the following categories: 1 – no experience, 2 – brief 
glimpse, 3 – almost clear experience, and 4 – clear experience. 
Responses were given by pressing one of four different buttons 
on the keyboard (‘1’, ’2’, ’3’ and ’4’ on the numeric pad). Each 
of the two response prompts stayed on the screen until the par-
ticipants made a button press. The whole experiment consisted 
of 475 trials including 95 trials for each of the five presentation 
times (which were presented in a randomly intermixed order). 
A short break occurred every 95 trials. Participants completed 
a short block of practice trials prior to the main experiment to 

F I G U R E  1   Task design and 
performance. (a) Each trial began with a 
white fixation cross presented for a jittered 
time between 2,500 and 3,000 ms, followed 
by the target stimulus—a consonant letter 
presented at 10, 20, 30, 40 or 50 ms, 
respectively. Immediately after, a mask 
appeared for 200 ms, followed by a blank 
screen for 500 ms. Then, a response prompt 
appeared, asking the participant which 
letter they saw. After the response, another 
prompt asked the participant to rate the 
quality of their perception on the four-point 
perceptual awareness scale. (b) Group-
averaged proportion of correct responses as 
a function of presentation time. (c) Group-
averaged mean awareness ratings as a 
function of presentation time. Both accuracy 
and awareness rating increased as a function 
of presentation time. All error bars indicate 
within-subject ± standard error (SEM)
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familiarise themselves with the task. The entire experimental 
session lasted approximately 2 hr.

2.3  |  Behavioural analysis

To evaluate the effectiveness of the experimental manipu-
lation, statistical analyses were carried out separately for 
the proportion of correct responses and awareness ratings 
as the dependent variables and presentation time (10, 20, 
30, 40 or 50  ms) as the independent variable. One-way 
repeated measures analyses of variance (ANOVA) were 
used. Additionally, effect-sizes were calculated using par-
tial η2 and Cohen's d.

2.4  |  EEG recording

Continuous EEG was recorded with two BrainAmp MR 
Plus units (Brain Products GmbH, Munich, Germany) at a 
sampling rate of 1,000  Hz through 61  Ag/AgCl pellet pin 
scalp electrodes placed according to the 10–10 International 
System. Two extra electrodes served as ground (TP9) and on-
line reference (AFz). Electrode impedances were kept below 
10  kΩ. Preprocessing steps were performed using custom 
scripts incorporating EEGLAB (Delorme & Makeig, 2004) 
and FieldTrip (Oostenveld et al., 2011) functions in Matlab 
(Mathworks, USA).

Offline, continuous data were filtered for power line 
noise using a notch filter centred at 50 Hz. Additional low- 
(100 Hz) and high-pass (0.1 Hz) filters were applied using 
a zero-phase second-order Butterworth filter. The data 
were then divided into epochs spanning − 2.5:1.5 s relative 
to stimulus onset on each trial. Subsequently, excessively 
noisy electrodes were removed without interpolation, the 
data were re-referenced to the average reference (exclud-
ing ocular channels) and trials with abnormal activity were 
rejected using a semi-automated artefact detection proce-
dure, in which trials with potential artefacts are identified 
based on (1) extreme amplitudes (threshold of ± 75 µV), 
(2) joint probability of the recorded activity across elec-
trodes at each time point (probability threshold limit of 
3.5 and 3 standard deviations [SD] for single-channel limit 
and global limit, respectively; pop_jointprob; Delorme & 
Makeig, 2004) and (3) kurtosis (local limit of 5 SD, global 
limit of 3 SD; pop_rejkurt; Delorme & Makeig, 2004). An 
average of 0.14 electrodes (min  =  0, max  =  2) and 12.8 
trials (2.7%; min = 0, max = 68) was rejected across par-
ticipants. An independent component analysis (ICA) was 
then run using the ‘runica’ EEGLAB function (Delorme 
& Makeig,  2004), and components corresponding to 
blinks, eye movements and muscle artefacts were removed. 

Missing channels were then interpolated using a spherical 
spline method.

2.5  |  Spectral analysis

Fourier-based spectro-temporal decomposition of the 
artefact-free single-trial data was performed using the 
‘ft_freqanalysis’ function (wavelet convolution method: 
‘mtmconvol’) from the FieldTrip toolbox (Oostenveld 
et  al.,  2011), yielding complex-valued time-frequency 
planes for each trial. A temporal resolution was maintained 
by decomposing overlapping 0.5-s segments of trial time 
series, consecutively shifted forward in time by 0.02  s. 
Data segments were multiplied with a Hanning taper and 
then zero-padded to a length of 1 s to achieve a frequency 
resolution of 1Hz across the range of 3:40  Hz. The data 
were then re-epoched from − 1 to 0.7 s relative to stimulus 
onset. We sought to investigate spectral EEG predictors of 
both discrimination accuracy and visual awareness ratings. 
The two spectral measures investigated were power and 
phase.

2.6  |  EEG time-frequency power analysis

Single-trial power was obtained for all time-frequency points 
as follows:

where F is the complex Fourier coefficient corresponding to 
time window t and frequency f. The absolute power values 
across trials were then rank scored to mitigate the influence 
of outlying trials. PAS ratings and letter presentation times 
were also rank transformed for the EEG power analyses. To 
test for systematic relationships between pre-stimulus power 
and behavioural measures, data were analysed in the follow-
ing steps:

Step 1: The within-participant relationships between 
single-trial power and both discrimination accuracy and vi-
sual awareness ratings were tested using separate models, in 
which EEG power and stimulus presentation time were en-
tered as the predictors and the behavioural measure as the 
outcome variable. Stimulus presentation time was included 
as a predictor in the models in order to quantify the effect of 
EEG power independently of the effect of sensory evidence 
strength, and to test for any interaction between the two. For 
PAS ratings, coefficients were estimated for the following 
linear model:

EEG power (t, f) = |F (t, f) |2,

Ratings = a + bEEG ∗ EEG + bPresTime ∗ PresTime + �,



      |  5BENWELL et al.

where Ratings represents the single-trial rank-transformed 
PAS ratings (1:4), EEG represents the single-trial rank-
transformed power values, and PresTime represents the 
single-trial rank-transformed letter presentation times. 
The regression coefficient bEEG indexes the direction and 
strength of the relationship between EEG power and PAS 
ratings that is independent of the relationship between let-
ter presentation time and PAS ratings (indexed by bPresTime

). a is the model intercept and ε the error term. To test for 
an interaction between EEG power and letter presenta-
tion time, the following model was also run for each time 
electrode-time-frequency point:

where the regression coefficient bint indexes the extent to which 
the effects of each predictor (EEG power and letter presenta-
tion time) on PAS Ratings are codependent. Both PAS Ratings 
models were implemented with the ‘fitlm’ function in Matlab 
R2020b (Mathworks, USA) using a least-squares solution.

For letter identification accuracy, a logistic regression was 
performed according to the following formula:

where bEEG indexes the direction and strength of the rela-
tionship between single-trial EEG-power and the probabil-
ity of being correct (P (Corr) ) independently of the 
relationship between letter presentation time and accuracy 
(indexed by bPresTime). To test for an interaction between 
EEG power and letter presentation time, the following 
model was also run for each time electrode-time-frequency 
point: log

(
P(Corr)

1−P(Corr)

)
= a + bint ∗ EEG ∗ PresTime

where the regression coefficient bint indexes the extent to 
which the effects of each predictor (EEG power and letter 
presentation time) on letter identification accuracy are code-
pendent. Both accuracy models were implemented with the 
‘fitglm’ function in Matlab R2020b (Mathworks, USA).

Step 2: For all four of the models described in Step 1, the 
regression coefficients were converted into z statistics rela-
tive to participant-specific null hypothesis distributions built 
by repeatedly shuffling (500 times) the mapping between the 
PAS ratings/letter identification accuracy and the predictors 
and recalculating the coefficients each time. This resulted in 
a z value for each participant, predictor and electrode-time-
frequency point. We thus incorporated knowledge of the 
variability at the participant-level effects into the group-level 
analyses.

Step 3: At the group level, z scores were combined across 
participants for statistical analysis. More specifically, if at 
a given data point (electrode/frequency/time), EEG-power 
systematically covaries linearly with the perceptual measure 

(discrimination accuracy or awareness rating), then z scores 
should show a consistent directionality across participants. 
Alternatively, if there is no systematic linear relationship be-
tween EEG-power and the perceptual measure, then z scores 
across participants should be random (centred around 0). 
Hence, for each EEG/behaviour relationship, we performed 
two-tailed t tests (test against 0) on the z-score values across 
participants at all data points (i.e., all electrodes, frequencies 
and time points). Cluster-based permutation testing was em-
ployed in order to control the familywise error rate (FWER) 
across multiple comparisons (Maris & Oostenveld,  2007). 
Calculation of the test statistic involved the following: based 
on the initial t tests, all t values above a threshold correspond-
ing to an uncorrected p value of 0.05 were formed into clus-
ters by grouping together adjacent significant time-frequency 
points and electrodes. This step was performed separately 
for samples with positive and negative t values (two-tailed 
test). Note that for a significant sample to be included in a 
cluster, it was required to have at least 1 adjacent significant 
neighbouring sample. The spatial neighbourhood of each 
electrode was defined as all electrodes within approximately 
5 cm, resulting in a mean of 6.3 (min = 3, max = 8) and me-
dian of seven neighbours per electrode. The t values within 
each cluster were then summed to produce a cluster-level t 
score (cluster statistic). Subsequently, this procedure was re-
peated across 2,000 permutations of the data (z scores from 
a random subset of participants were multiplied by − 1 and 
the two-tailed t test against 0 was calculated) with the larg-
est cluster-level t score on each iteration being retained in 
order to build a data-driven null hypothesis distribution. The 
location of the original real cluster-level t scores within this 
null hypothesis distribution indicates how probable such an 
observation would be if the null hypothesis were true (no 
systematic difference from 0 in z scores across participants). 
Hence, if a given negative/positive cluster had a cluster-level 
t score lower than 2.5% or higher than 97.5% of the respective 
null distribution t scores, then this was considered a signifi-
cant effect (5% alpha level).

2.7  |  Bayes factor (BF) analysis of EEG 
time-frequency power results

In order to estimate evidence for both the null hypothesis 
(no relationship between EEG power and behavioural meas-
ure) and the alternative hypothesis (significant relationship 
between EEG power and behavioural measure), we also 
performed BF analyses. A BF below 1/3 indicates evidence 
for the null hypothesis, above 3 indicates evidence for the 
alternative hypothesis and between 1/3 and 3 indicates that 
the evidence is inconclusive (potentially due to a lack of sta-
tistical power). For all data points included in the significant 

Ratings = a + bint ∗ EEG ∗ PresTime + �,

log

(
P (Corr)

1 − P (Corr)

)
= a + bEEG ∗ EEG + bPresTime ∗ PresTime,
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EEG power/behavioural measure clusters (detected in the re-
gression analysis), the BF was calculated with a prior which 
followed a Cauchy distribution with a scale factor of 0.707 
(Rouder et  al.,  2009). For each time point, the percentage 
of electrode-frequency points showing evidence for the null 
and alternative hypotheses respectively were calculated. This 
analysis was performed separately for both the awareness 
and accuracy data.

2.8  |  Follow-up EEG power analysis

In our previous study, we found that the negative relation-
ship between pre-stimulus power and awareness ratings 
scaled with the strength of the stimulus, being present for 
higher but not for the lowest stimulus intensities (nor for 
catch trials in which no stimulus was presented) (Benwell 
et al., 2017). In order to replicate this finding, we performed 
an additional analysis to test for this effect in the current 
experiment, using the data from electrode-time-frequency 
points included in any significant clusters prior to stimulus 
onset, and mirroring our previous analysis approach. Single-
trial, cluster-averaged, pre-stimulus power values were ex-
tracted for each participant and trials were split into ‘above’ 
and ‘below’ median power bins. The proportion of correct 
responses and mean PAS ratings were then calculated sepa-
rately for each presentation time (10, 20, 30, 40 and 50 ms) in 
each pre-stimulus power bin (‘above’ and ‘below’ median). 
Subsequently, repeated measures ANOVAs with the factors 
pre-stimulus cluster power (high, low) and presentation time 
were performed on both the accuracy and awareness rating 
measures separately.

2.9  |  EEG time-frequency phase analysis

Step 1: To test for within-participant relationships between 
single-trial phase and both discrimination accuracy and vis-
ual awareness ratings, we employed a measure of circular-
linear association called ‘weighted intertrial phase clustering’ 
(wITPC) (Cohen & Cavanagh, 2011; Cohen & Voytek, 2013). 
wITPC represents the resultant vector length (intertrial phase 
coherence) of single-trial phase angles, once the length of 
each individual vector has been weighted by the single-trial 
behavioural outcome (i.e., PAS rating or accuracy). Under 
the null hypothesis of no EEG phase-behaviour relationship, 
behavioural responses should be uniformly distributed across 
phase angles (and hence the average vector length would be 
close to zero). The magnitude of the average wITPC vector 
can be taken as a modulation of behaviour by phase angle.

wITPC was calculated for electrode-time-frequency point 
by multiplying the unit length complex-valued phase angle 
by the behavioural response on each trial, averaging those 

complex numbers across all trials, and taking the absolute 
value to obtain the average vector length. In order to quan-
tify the effects of phase on behaviour independently of sen-
sory evidence strength and for the PAS ratings and accuracy 
main effect analyses separately, we first retrieved the residual 
variations after regressing out the effect of letter presentation 
time on each behavioural measure. Hence, the wITPC was 
calculated here by multiplying the phase angle by the residual 
variation in behavioural responses, after regressing out the 
effect of letter presentation time, averaging those complex 
numbers across all trials and taking the absolute value to ob-
tain the average vector length. PAS ratings, accuracy (coded 
0 [incorrect] or 1 [correct]), regression residuals and letter 
presentation time were all rank transformed prior to calcula-
tion of the wITPC.

Step 2: Because the resulting magnitudes are not com-
parable across participants, and in order to control for pos-
sible nonuniformity of phase angles across trials (Cohen 
& Voytek,  2013), we applied within-participant permuta-
tion testing in which a participant-specific null hypothesis 
distribution was built by shuffling the observed phase and 
behavioural values with respect to one another across 500 
iterations. The standardized distance between the actual 
wITPC value and the null distribution was taken as a z value 
corresponding to the probability of finding the observed 
behaviour-phase relationship by chance, given the observed 
data. The entire procedure was performed separately for the 
PAS ratings, accuracy and presentation time main effects, 
respectively.

Step 3: The group statistics on the single-participant 
wITPC z scores then proceeded exactly as described in Step 3 
of the EEG power analysis above.

2.10  |  BF analysis of EEG time-frequency 
phase results

As with the power analyses, we again calculated BFs to quan-
tify the evidence for both the null hypothesis (no relationship 
between phase and behavioural measure) and the alternative 
hypothesis (significant relationship between phase and be-
havioural measure). Again, the BF was calculated for all data 
points included in the significant pre-stimulus EEG power/
PAS ratings cluster. For each time point, the percentage of 
electrode-frequency points showing evidence for the null and 
alternative hypotheses respectively was calculated separately 
for both the awareness and accuracy data.

2.11  |  Phase opposition sum (POS) analysis

In order to replicate the method employed in our previous 
study (Benwell et al., 2017) and hence to allow the current 
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results to be directly comparable, we also employed a POS 
analysis (VanRullen, 2016a). This approach tested whether 
trials associated with one perceptual outcome (i.e., cor-
rect letter identification or high subjective awareness) dif-
fered in terms of their distribution of oscillatory phases for 
a given time-frequency point compared to trials associ-
ated with the opposite perceptual outcome (i.e., incorrect 
identification or low subjective awareness). POS analysis 
involves the comparison of inter-trial phase coherence 
(ITPC) measured over all trials (serving as a baseline) with 
ITPC measured separately for the trials from each condi-
tion (i.e., correct versus incorrect identification and high 
versus low subjective awareness). If the ITPC from each 
condition is larger than the total ITPC, then this suggests 
that the two perceptual outcomes are phase-locked to dif-
ferent phase angles.

ITPC was calculated as follows:

where F is the complex Fourier coefficient corresponding to 
time window t and frequency f, n is the number of trials, and k is 
the individual trial index. The ITPC was calculated in this way 
over all trials and separately for those trials corresponding to 
correct identification, incorrect identification, high awareness 
ratings (‘3’ and ‘4’ PAS ratings) and low awareness ratings (‘1’ 
and ‘2’ PAS ratings), respectively.

Subsequently, the POS was calculated as follows:

where ITPCA and ITPCB are the ITPC calculated separately for 
the two trial types to be compared (i.e., correct versus incorrect 
response trials or high versus low awareness rating trials) and 
ITPCALL is the ITPC calculated across all trials regardless of 
condition. POS will be positive when the ITPC of each trial 
group exceeds the overall ITPC; the main situation of interest, 
which indicates significant phase opposition between the two 
conditions.

Statistical analysis was first performed at the level of in-
dividual participants using a permutation test. For each par-
ticipant, the trial assignment to Group A or B was randomly 
permuted 2,000 times and the POS value calculated and 
stored on each iteration. For each electrode-time-frequency 
point, the p value was calculated as the proportion of per-
mutations that yielded a higher POS than the observed data. 
Hence, the p value reflects the likelihood of observing the 
actual POS value if the null hypothesis (no phase opposition) 
was true. The individual participant p-values were subse-
quently combined using Fisher's combined probability test 
(Fisher, 1925), which yielded a single group-level p value for 
each electrode-time-frequency point. In order to control for 

multiple comparisons, we employed nonparametric false dis-
covery rate (FDR) correction (Benjamini & Yekutieli, 2001) 
across the pre-stimulus period with a threshold (q value) of 
0.05.

Additionally, we equalized ‘correct’ and ‘incorrect’ tri-
als (for the accuracy analysis) and ‘high awareness rating’ 
and ‘low awareness rating’ trials (for the awareness analysis) 
by randomly selecting from the higher likelihood outcome 
the same number of trials present for the lower likelihood 
outcome. This resulted in an average equalized number of 
trials per outcome across participants of 166 (min  =  83, 
max  =  233) for visual awareness (‘high awareness rat-
ing’ versus ‘low awareness rating’) and 170 (min  =  106, 
max  =  231) for accuracy (‘correct’ and ‘incorrect’). This 
analysis was implemented because the POS loses statistical 
power when trial numbers are not equal between conditions 
(VanRullen, 2016a).

The wITPC and POS measures provide similar infor-
mation about EEG phase-behaviour relationships. Whereas 
POS indexes whether there is a consistent difference in mean 
phase angle between binary behavioural outcomes (i.e., high 
versus low PAS ratings), the wITPC approach does not re-
quire a binary outcome measure (and hence no arbitrary bin-
ning of behavioural data) (Cohen & Cavanagh, 2011; Cohen 
& Voytek,  2013), and hence enabled a statistical approach 
that more closely approximates the EEG power—behaviour 
analyses, thereby facilitating comparison of the power and 
phase results.

2.12  |  Pre-stimulus FFT analysis

Due to the temporal smearing inherent in time-frequency 
decomposition, which can lead to pre-stimulus EEG ef-
fects being contaminated by post-stimulus activity (Zoefel 
& Heil, 2013; van Diepen & Mazaheri,  2018; Brüers & 
VanRullen,  2017), we employed control analyses for both 
power and phase which included only pre-stimulus EEG 
time points (−1:0 s relative to stimulus onset) (see Samaha, 
Gosseries, et al., 2017 for a similar approach). Fast Fourier 
transforms (FFT) were performed on the clean, single-trial 
pre-stimulus waveforms at each electrode within each par-
ticipant, using the ‘mtmfft’ method in FieldTrip (Maris & 
Oostenveld,  2007). The pre-stimulus data segments were 
windowed using a Hanning taper and zero-padded to a length 
of 1 s to achieve a frequency resolution of 1 Hz across the 
range of 3:40 Hz. The power- and phase-behaviour relation-
ships were then tested using exactly the same three steps de-
scribed above for the EEG-time-frequency analyses, but now 
with only the electrode and frequency dimensions: z statis-
tics were calculated for both regression coefficients (power-
behaviour analyses) and wITPC (phase-behaviour analyses) 
by permuting the mapping between EEG data and behaviour 

ITPC (t, f) = | 1

n

n∑

k= 1

Fk (t, f)

||Fk (t, f)||
| ,

POS = ITPCA + ITPCB − 2 ∗ ITPCALL,
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500 times within each participant. The group statistics on 
the z scores proceeded exactly as described for the time-
frequency analyses but with only two dimensions (electrodes 
and frequencies). Again, we calculated BFs to quantify the 
evidence for both the null and alternative hypotheses for each 
analysis. The BF was calculated for all electrode-frequency 
data points.

3  |   RESULTS

3.1  |  Behavioural results

The task involved the identification of one of 19 consonant let-
ters that were displayed for 10–50 ms (five exposure durations) 
before being masked by a 200-ms letter compound stimulus 
(Figure  1a). Figure  1b plots the group-averaged proportion 
of correct responses as a function of presentation time, and 
Figure 1c plots the group-averaged awareness ratings. Both ac-
curacy and awareness ratings increased as a function of pres-
entation time. Mean proportions correct (Figure  1b) ranged 
from 0.1  ±  0.04 (10  ms) to 0.87  ±  0.02 (50  ms), whereby 
0.053 represents chance-correct response rate (1/19 letters). 
Mean awareness ratings (Figure  1c) ranged from 1.3  ±  0.1 
(10 ms) to 2.7 ± 0.07 (50 ms), hence from close to “no ex-
perience” (PAS 1) up to “almost clear experience” (PAS 3). 
The repeated measures ANOVA on the proportion of correct 
responses revealed a significant main effect of presentation 
time (F[4, 84] = 314.595, p < .001, �2

p
 = 0.937, linear contrast: 

F[1, 21] = 992.168, p < .001, �2
p
 = 0.979). Pairwise compari-

sons revealed significant increases in the proportion of correct 
responses across all presentation times (all p's < 0.001, min t 
value = 5.893, min Cohen's d = 1.359). The repeated meas-
ures ANOVA on the PAS ratings (subjective awareness) also 
revealed a significant main effect of presentation time (F[4, 
84]  =  195.523, p  <  .001, �2

p
  =  0.903, linear contrast: F[1, 

21] = 224.84, p < .001, �2
p
 = 0.915). Pairwise comparisons re-

vealed significant increases in PAS ratings across all presenta-
tion times (all p's < 0.001, min t value = 9.679, min Cohen's 
d = 2.092). Hence, the experimental manipulation of presen-
tation time led to the expected increases in both identification 
accuracy and awareness ratings.

4  |   EEG RESULTS

4.1  |  Pre-stimulus power predicts visual 
awareness ratings but not discrimination 
accuracy

Figure 2a plots t values averaged across all electrodes at each 
time point (from  −  1 to  +  0.7  s post-stimulus) denoting the 
strength of the EEG power–PAS rating relationship, whilst 

controlling for the influence of stimulus strength (letter pres-
entation time) on PAS ratings, across frequencies of 3–40 Hz. 
These t values represent group-level tests of whether regres-
sion coefficient (EEG power versus PAS rating) z scores from 
the individual single-trial analyses showed a systematic lin-
ear relationship across participants. We found one significant 
negative cluster (i.e., low power was associated with high PAS 
ratings and high power with low PAS ratings) which spanned 
across both pre- and post-stimulus time points (−0.84 to 0.7 s 
relative to stimulus onset, 3–31 Hz: cluster statistic = −24,019, 
p  =  .0035). For BFs from those electrode-frequency points 
included in the significant negative cluster, the percentage of 
data points providing evidence for H1 far outnumbered those 
providing evidence for H0 (see Figure 2a, bottom inset). In the 
pre-stimulus period of interest, the effect was widely distributed 
over almost all electrodes but with a right posterior maximum 
(see Figure 2b, left map: data averaged over all electrode-time-
frequency points included in the cluster from − 1 to 0 s relative 
to stimulus onset). Figure 2b (right map) shows the topographi-
cal representations of the post-stimulus portion of the negative 
cluster. Figure  2c (left panel) plots the group averaged fre-
quency spectra computed separately for high PAS rating tri-
als (red lines) and low PAS rating trials (black lines) from the 
data point corresponding to the peak t value in the pre-stimulus 
cluster (electrode POz, −0.54  s). Compared to low PAS rat-
ing trials, high PAS rating trials were associated with decreased 
pre-stimulus alpha power. This effect was highly consistent 
across participants as shown by the scatterplot (Figure 2c, right 
panel) of the difference in mean 10-Hz power between high and 
low PAS rating trials for each participant.

In contrast, no relationship was found between EEG 
power and identification accuracy, whilst controlling for the 
influence of stimulus strength on accuracy, during either the 
pre- or post-stimulus time periods (Figure 2d). For BFs from 
those electrode-frequency points included in the significant 
negative cluster from the awareness analysis, the percentage 
of data points providing evidence for H0 far outnumbered 
those providing evidence for H1, during the pre-stimulus 
period, though this pattern tended to reverse post-stimulus 
(see Figure  2d, bottom inset). Figure  2e (left panel) plots 
the group averaged frequency spectra computed separately 
for correct (red lines) and incorrect trials (black lines) from 
the data point corresponding to the peak t value in the visual 
awareness analysis (electrode POz, −0.54 s). No difference in 
power was observed between correct and incorrect trials (see 
also the scatterplot in Figure 2e [right panel] of the difference 
in mean 10-Hz power between correct and incorrect trials for 
each participant).

Both the PAS rating and accuracy results were con-
firmed when only pre-stimulus data (−1 to 0 s relative to 
stimulus onset) were included in the single-trial FFT anal-
yses. Figure 3a plots t values averaged across all electrodes 
at each frequency (from 3 to 40) denoting the strength 
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and direction of the EEG power–PAS rating relationship, 
whilst controlling for the influence of stimulus strength on 
PAS ratings. One significant negative cluster was found 
which spanned from 9 to 12 Hz (cluster statistic = −103.4, 
p  =  .0095). In contrast, no significant relationship was 
found between EEG power and identification accuracy at 
any frequency (see Figure 3b).

4.2  |  Follow-up EEG power 
analysis: no evidence that the pre-stimulus 
power-visual awareness relationship depends 
on stimulus strength

In order to test whether single-trial relationships between 
EEG power and the behavioural outcomes were dependent 

F I G U R E  2   Relationship between oscillatory power and perception, controlling for letter presentation time. (a) The results of a single trial 
regression analysis revealed that pre-stimulus power was negatively correlated with visual awareness ratings (i.e., high power was associated 
with low PAS ratings and low power with high PAS ratings, black contour denotes significant cluster-corrected effects [p < .05]). Stimulus 
onset is highlighted by a vertical black dashed line. The bottom inset plots the time-course of the percentage of electrode-frequency points within 
the significant cluster with Bayes factors showing evidence for the null (H0: no EEG/awareness relationship [dashed red line]) and alternative 
hypotheses respectively (H1: significant EEG/awareness relationship [solid blue line]). As expected, the percentage of data points providing 
evidence for H1 far outnumbered those providing evidence for H0. (b) Plots the scalp topographies of the group-averaged effect separately for 
the pre- and post-stimulus portions of the significant negative cluster. In the pre-stimulus period of interest, the effect was widely distributed 
over almost all electrodes but with a posterior maximum (left map). Electrodes which were included in the significant cluster are highlighted in 
white. (c) Group-average frequency spectra computed separately for high PAS rating trials (red lines) and low PAS rating trials (black lines) in 
the pre-stimulus cluster. Compared to low PAS rating trials, high PAS rating trials were associated with decreased pre-stimulus alpha power. This 
effect was highly consistent across participants as shown by the scatterplot (right panel: black dot represents the mean difference value) of the 
difference in mean 10-Hz power between high and low PAS rating trials for each participant. (d) No relationship was found between EEG power 
and discrimination accuracy in any of the time-frequency ranges examined. The bottom inset plots the time-course of the percentage of electrode-
frequency points from the significant pre-stimulus EEG/awareness cluster with Bayes factors showing evidence for the null (H0: no EEG/accuracy 
relationship [dashed red line]) and alternative hypotheses respectively (H1: significant EEG/accuracy relationship [solid blue line]). The percentage 
of data points providing evidence for H0 far outnumbers those providing evidence for H1 during the pre-stimulus period, though this pattern is 
reversed somewhat post-stimulus. (e) Group averaged frequency spectra computed separately for correct (red lines) and incorrect trials (black lines) 
within the pre-stimulus cluster that proved significant in the EEG/awareness analysis above. No difference in power was observed between correct 
and incorrect trials in this EEG/accuracy analysis. The right panel plots the difference in mean 10-Hz power between correct and incorrect trials for 
each participant (black dot represents the mean difference value)
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on the strength of the stimulus (letter presentation time), we 
performed additional interaction analyses. No significant in-
teraction effects were found between EEG power and presen-
tation time for either PAS ratings (Figure 4a) or identification 
accuracy (Figure  4b), when considering all electrode-time-
frequency points or when considering only pre-stimulus time 
points in the FFT analysis (Figure 4c,d).

To directly replicate the analysis from our previous study 
(Benwell et  al.,  2017), we performed additional median 
power split repeated measures ANOVA analyses, using the 
single-trial data only from the pre-stimulus (−1:0  s) por-
tion of the significant EEG power-PAS ratings cluster. The 
proportion of correct responses and mean PAS ratings were 
calculated separately for each presentation time in each 
power bin (‘above’ and ‘below’ median power) and partici-
pant. The corresponding group mean data are displayed for 
visual awareness ratings in Figure 4e and for proportion of 
correct responses in Figure 4f as a function of high (black 
dots/lines) and low power trials (red dots/lines) per presen-
tation time.

The repeated measures ANOVA on the visual awareness 
ratings revealed a significant main effect of pre-stimulus 
power (F[1, 21]  =  9.946, p  =  .005, �2

p
  =  0.321), a signif-

icant main effect of presentation time (F[4, 84] = 196.274, 
p  <  .001, �2

p
  =  0.903), but no significant pre-stimulus 

power  ×  presentation time interaction (F[4, 84]  =  1.76, 
p = .145, �2

p
 = 0.077). Hence, whilst we confirmed that pre-

stimulus power relates to awareness ratings as in our previous 
study (Benwell et al., 2017), we found no significant evidence 
that the pre-stimulus EEG power–PAS ratings relationship 
was dependent on stimulus strength (in contrast to Benwell 
et al., 2017).

The repeated measures ANOVA on the proportion of 
correct responses revealed a significant main effect of pre-
sentation time (F[4, 84]  =  311.97, p  <  .001, �2

p
  =  0.937) 

but no significant main effect of pre-stimulus power 
(F[1,21] = 0.019, p =  .892, �2

p
 < 0.001) and no significant 

pre-stimulus power  ×  presentation time interaction (F[4, 
84] = 1.772, p = .142, �2

p
 = 0.078). Hence, there was also no 

evidence for an effect of pre-stimulus power on accuracy (or 
any interaction with letter presentation time), in line with the 
results of the regression analyses.

4.3  |  No compelling evidence that 
pre-stimulus phase predicts visual awareness 
ratings or identification accuracy

Figure 5a plots t values averaged across all electrodes at each 
time point for the wITPCz analysis denoting the strength of 
the EEG phase–PAS rating relationship, whilst controlling 
for the influence of stimulus strength (letter presentation 
time) on PAS ratings, across frequencies of 3–40  Hz. The 
t values index group-level tests of whether weighting the 
single-trial phase vectors by their perceptual outcomes leads 
to an increase (positive values) or decrease (negative values) 
of the overall ITPC, relative to a participant specific null 
distribution. We found two significant positive clusters that 
were largely post-stimulus: a low frequency (3–13 Hz) clus-
ter spanning − 0.14 to 0.7 s relative to stimulus onset (cluster 
statistic = 9,739.3, p = .0025), and a higher frequency (10–
30 Hz) cluster spanning − 0.18 to 0.46 s relative to stimulus 
onset (cluster statistic = 5,363.4, p = .01). Figure 5b shows 
the topographical representations of the two clusters. Though 

F I G U R E  3   Single-trial fast Fourier transform analyses on pre-stimulus data confirm the relationship between pre-stimulus oscillatory power 
and perception. (a) Pre-stimulus power was negatively correlated with visual awareness ratings in the alpha (9–12 Hz) band (i.e., high power was 
associated with low PAS ratings and low power with high PAS ratings, grey background fill denotes significant cluster-corrected effects [p < .05]). 
The bottom inset plots the percentage of all electrodes with Bayes factors showing evidence for the null (H0: no EEG/awareness relationship 
[dashed red line]) and alternative hypotheses respectively (H1: significant EEG/awareness relationship [solid blue line]) across frequencies. The 
topographical representation of the effect is shown below the line plot. Electrodes which were included in the significant cluster are highlighted in 
white. (b) In contrast, no relationship was found between pre-stimulus power and discrimination accuracy in any frequency band
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both clusters included time points immediately preceding and 
including stimulus onset, this likely reflects temporal smear-
ing of primarily post-stimulus effects into the pre-stimulus 
period (Zoefel & Heil, 2013; van Diepen & Mazaheri, 2018; 
Brüers & VanRullen,  2017). Indeed, when only the pre-
stimulus data (−1 to 0 s relative to stimulus onset) were in-
cluded in the single-trial FFT analyses (thus ruling out any 

contamination from post-stimulus activity), no significant 
relationship was found between EEG phase and PAS ratings 
at any frequency (see Figure 5c).

For the relationship between EEG phase and identifica-
tion accuracy (Figure 5d), we found one significant positive 
cluster that was largely post-stimulus (−0.06:0.7 s relative to 
stimulus onset, 3:24 Hz: cluster statistic = 19,079, p < .001) 

F I G U R E  4   No interaction between oscillatory power and letter presentation time in predicting awareness ratings or accuracy. (a, b) The 
results of the single trial regression analysis revealed that the relationship between pre-stimulus power and visual awareness ratings (a) or accuracy 
(b) was not dependent on letter presentation time (interaction terms shown). Stimulus onset is highlighted by a vertical black dashed line. The 
bottom insets plot the time-course of the percentage of electrode-frequency points from the significant pre-stimulus EEG/awareness cluster (of 
Figure 2a) with Bayes factors showing evidence for the null (H0: no EEG/presentation time interaction [dashed red line]) and alternative hypotheses 
respectively (H1: significant EEG/presentation time interaction [solid blue line]). The percentage of data points providing evidence for H0 far 
outnumbers those providing evidence for H1 during the pre-stimulus period. (C, D) Single-trial fast Fourier transform analyses restricted to pre-
stimulus data confirmed the lack of interaction effects between pre-stimulus EEG power and letter presentation time when predicting either PAS 
ratings (c) or accuracy (d), respectively. The bottom insets plot the percentage of electrodes with Bayes factors showing evidence for the null (H0: 
no EEG/presentation time interaction [dashed red line]) and alternative hypotheses respectively (H1: significant EEG/presentation time interaction 
[solid blue line]) across frequencies. (e, f) Task performance after a median power split using single-trial data from the pre-stimulus portion of the 
significant EEG power–visual awareness cluster presented in Figure 2a. Group-averaged mean awareness ratings (e) and group-averaged proportion 
of correct responses (f) are shown as a function of presentation time for low (red lines) and high (black lines) power. Both accuracy and awareness 
rating increased as a function of presentation time in both power conditions, but no significant interaction between EEG power and presentation 
time was found for either PAS ratings or proportion correct. All error bars indicate within-subject ± standard error (SEM)
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(see map in Figure 5e for a topographic representation of the 
cluster). Again, when only pre-stimulus data were included 
in the single-trial FFT analyses, no significant relationship 
was found between EEG phase and accuracy at any frequency 
(see Figure 5f).

Similar relationships were observed between EEG phase 
and both PAS ratings and identification accuracy in two vari-
ants of the above analyses, with all relationships confined 
to the post-stimulus window (reported as Supplementary 

Material). First, when letter presentation time was not con-
trolled for, additional significant negative clusters were 
observed at early post-stimulus time points across low fre-
quencies (see Figure  S1a,b,d,e). These negative clusters 
hence likely reflect the covariation of letter presentation time 
with post-stimulus phase locking. Indeed, an additional anal-
ysis of the phase-presentation time main effect showed sig-
nificant effects which largely overlapped in time, space and 
frequency (see Figure  S1g,h). Furthermore, no significant 

F I G U R E  5   Relationship between oscillatory phase and perception, controlling for letter presentation time. (a) Time-frequency map of single 
trial phase modulations by visual awareness rating residuals (with the effect of letter presentation time on awareness ratings regressed out) from 
a weighted ITPC z score (wITPCz) analysis. These t-values index group-level tests of whether weighting the single-trial phase vectors by their 
perceptual outcomes leads to an increase (positive values) or decrease (negative values) of the overall ITPC, relative to a participant specific 
null distribution. Black contour denotes significant cluster-corrected effects (p < .05, significant clusters collapsed together). Stimulus onset is 
highlighted by a vertical black dashed line. The bottom inset plots the time-course of the percentage of electrode-time-frequency points from the 
significant pre-stimulus EEG power/awareness cluster with Bayes factors showing evidence for the null (H0: no EEG phase/awareness relationship 
[dashed red line]) and alternative hypotheses respectively (H1: significant EEG phase/awareness relationship [solid blue line]). (b) Plots the scalp 
topographies of the group-averaged effects separately for the two significant positive clusters. Electrodes which were included in the significant 
cluster are highlighted in white. (c) No relationship was found between pre-stimulus phase and awareness ratings when only pre-stimulus data 
(−1–0 s relative to stimulus onset) were included in the single-trial fast Fourier transform (FFT) analysis (thus ruling out any contamination from 
post-stimulus activity). The bottom inset plots the percentage of electrodes with Bayes factors showing evidence for the null (H0: no EEG phase/
awareness relationship [dashed red line]) and alternative hypotheses respectively (H1: significant EEG phase/awareness relationship [solid blue 
line]). (d) Time-frequency map of single trial phase modulations by accuracy. These t values index the group-level strength and direction of 
the phase locking–accuracy relationship. The bottom inset plots the time-course of the percentage of electrode-time-frequency points from the 
significant pre-stimulus EEG power/awareness cluster with Bayes factors showing evidence for the null (H0: no EEG phase/accuracy relationship 
[dashed red line]) and alternative hypotheses respectively (H1: significant EEG phase/accuracy relationship [solid blue line]). (e) Plots the group-
averaged scalp topography of the significant positive cluster. (f) Again, no relationship was found between pre-stimulus phase and accuracy when 
only pre-stimulus data were included in the single-trial FFT analysis
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phase effects were observed for any of the single-trial FFT 
analyses when only pre-stimulus EEG data were included 
(Figure S1c,f). Second, a POS analyses (replicating Benwell 
et al., 2017) also provided no evidence for a relationship be-
tween pre-stimulus phase and either PAS ratings or identifi-
cation accuracy (see Figure S2).

Overall, the data indicate that the significant EEG phase–
behaviour relationships we observed originated entirely in 
stimulus-evoked neural activity (Brüers & VanRullen, 2017; 
Del Cul et al., 2007; van Diepen & Mazaheri, 2018; Tagliabue 
et al., 2019), and so we find no compelling evidence for an 
influence of spontaneous pre-stimulus oscillatory phase on 
perception in our data set.

5  |   DISCUSSION

In this study, we implemented a letter discrimination task to 
examine the effects of pre-stimulus oscillatory activity on 
both discrimination accuracy and perceptual awareness rat-
ings. Single-trial regression analyses revealed a negative cor-
relation between pre-stimulus power (~9–12  Hz, Figure  3) 
and subjective awareness ratings, but no relationship between 
pre-stimulus power and discrimination accuracy. In contrast, 
we did not find strong evidence that pre-stimulus oscillatory 
phase predicted subjective awareness ratings nor accuracy in 
any frequency band. These results largely replicate those re-
ported by Benwell and colleagues (2017), but this time using 
an mAFC paradigm rather than a 2-AFC paradigm. Taken to-
gether, these experiments emphasize a dissociation between 
pre-stimulus neural predictors of subjective and objective 
measures of task performance and shed light on the processes 
by which pre-stimulus oscillatory activity influences visual 
perception.

Several recent studies employing formal psychophysical 
models (e.g., SDT; Green & Swets, 1966) have contributed 
to a better understanding of the relationship between base-
line neural activity and visual perception. These studies have 
found correlations between pre-stimulus alpha suppression 
and a liberal decision criterion (Iemi et al., 2017; Limbach 
& Corballis, 2016). Furthermore, observers can exert delib-
erate control over fluctuations in pre-stimulus alpha activity 
when a more liberal decision criterion is experimentally in-
duced (Kloosterman et al., 2019). Hence, baseline alpha ac-
tivity seems to relate to bias in perceptual reports rather than 
perceptual sensitivity, possibly because it reflects changes in 
global baseline excitability (Romei et al., 2008) that may af-
fect both signal and noise (Iemi et al., 2017). This account 
is represented by the baseline sensory excitability model 
(BSEM) proposed by Samaha, Iemi, et al., (2020).

One question is then at what stage posterior baseline alpha 
activity/excitability interacts with information processing 
during perceptual tasks. In order to bias reports, increased 

baseline excitability could modulate the observers' decision-
making strategy (i.e., induce a decision bias) and/or amplify 
their subjective perception (i.e., induce a perceptual bias) 
(Iemi et  al.,  2017; Samaha, Iemi, et  al.,  2020). Recently, 
Iemi and Busch (2018) have provided compelling evidence 
that pre-stimulus alpha power induces changes in perceptual 
experience, rather than the decision criterion alone, in an ex-
periment involving a two-interval forced choice (2IFC) task. 
Another line of research providing evidence that baseline 
alpha-power biases subjective perceptual experience comes 
from studies measuring subjective reports of performance. In 
2-AFC discrimination tasks, pre-stimulus power is negatively 
correlated with perceptual awareness/subjective visibility rat-
ings (Benwell et al., 2017; Samaha, LaRocque, et al., 2020) 
and decision confidence (Samaha, Iemi, et  al.,  2017; 
Wöstmann et al., 2019), but there is no effect of pre-stimulus 
power on accuracy, neither in visual nor auditory modalities. 
A similar dissociation has been reported for pre-stimulus 
alpha-power and idiosyncratic biases versus accuracy 
(Grabot & Kayser, 2020). In addition, Benwell et al., (2017) 
found the negative correlation between pre-stimulus alpha 
power and awareness to be contingent on the stimulus being 
present (no such correlation in catch trials) and to depend on 
stimulus-intensity (see also Chaumon & Busch, 2014). This 
was taken as further evidence for the pre-stimulus alpha-
perception link reflecting a perceptual rather than decisional 
bias. In the current experiment, we did not implement catch 
trials, as there was no stimulus-absent condition, and we were 
unable to fully replicate the aforementioned dependency of 
the alpha-perception relationship on stimulus-intensity (i.e., 
stimulus presentation times). However, a similar pattern as in 
Benwell et al., (2017) was observed (i.e., stronger influence 
of pre-stimulus alpha on awareness ratings at longer presen-
tation times; see Figure 4e: 30 and 50 ms versus 10, 20 and 
40 ms presentation times), although the relationship between 
pre-stimulus alpha power and awareness ratings did not sig-
nificantly differ across letter presentation times. Overall, we 
therefore believe that the current results remain mostly in line 
with a model positing that baseline alpha activity/excitabil-
ity modulates perceptual experience directly rather than only 
modulating decision bias.

Mechanistically, changes in subjective perceptual expe-
rience as a function of alpha-band modulations may result 
from an effect on early sensory responses (Samaha, Iemi, 
et  al.,  2020), a response gain mechanism at late perceptual 
stages (e.g., Benwell et al., 2017; Chaumon & Busch, 2014), 
or through a combination of both (see Iemi et al., 2019). The 
evidence for either an early or a late perceptual account is in-
conclusive so far, and the present data cannot speak directly 
to this issue. More direct tests of the stage at which baseline 
alpha activity interacts with stimulus processing may be ob-
tained from the analysis of visual evoked potentials and their 
comodulation with pre-stimulus alpha activity. Gundlach and 
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colleagues (2020) measured ongoing alpha-band oscillations 
and steady-state visual evoked potentials (SSVEPs) simulta-
neously, to establish whether alpha-band modulations relate 
to early sensory input gain. Using a spatial cueing paradigm, 
they showed that the amplitudes of both SSVEPs and alpha-
band oscillations are modulated by spatial attention but that 
their modulations vary independently of each other and have 
different temporal dynamics (Gundlach et al., 2020; see also 
Keitel et al., 2019 and Antonov et al., 2020). This is support-
ive of a role of alpha-band oscillations beyond early sensory 
processing. In line with these findings, Zhigalov and Jensen 
(2020) implemented a novel broadband frequency tagging 
technique and found that the sources of alpha oscillations were 
localized around the parieto-occipital sulcus, rather than the 
primary visual cortex. By contrast, Iemi et al., (2019) found 
an early component of the visual evoked potential (C1) to 
comodulate with spontaneous pre-stimulus alpha power, sug-
gesting that alpha may have an inhibitory effect on early stages 
of sensory processing (see also Zazio et al., 2020). The source 
of these discrepancies in the literature is unclear. Further re-
search is needed to disentangle the influence of pre-stimulus 
EEG power on different post-stimulus processing stages.

In addition to alpha power, the phase of low frequency 
rhythms has been suggested to play an important role in vi-
sual perception (Mathewson et al., 2011; VanRullen, 2016b), 
although the evidence appears more mixed for the pre-
stimulus phase- than the pre-stimulus power-perception link. 
The phase of pre-stimulus oscillations in the alpha-band has 
been associated with both the detection probability of near-
threshold stimuli as well as discrimination accuracy between 
two rapidly presented visual stimuli (Busch et  al.,  2009; 
Mathewson et  al.,  2009; Milton & Pleydell-Pearce,  2016; 
Ronconi et al., 2017; Samaha et al., 2015). However, a recent 
registered report by Ruzzoli et al., (2019) failed to replicate 
the seminal finding that spontaneous pre-stimulus alpha-
phase correlates with visual target detection. In the present ex-
periment, we found no compelling evidence that pre-stimulus 
oscillatory phase predicts either subjective awareness or ac-
curacy in a letter identification task, replicating the results 
of Benwell et al. (2017). When only pre-stimulus EEG data 
were included in the single-trial analyses (thus ruling out any 
contamination from post-stimulus activity), no significant 
relationship was found between phase and either awareness 
ratings or accuracy at any frequency. The discrepancy with 
previous findings may be due to differences in experimen-
tal design. We presented the stimuli at varying time intervals 
from trial onset, which might have precluded phase from in-
fluencing perception. Samaha and colleagues (2015) found 
more phase consistency when participants expected the vi-
sual target onset, compared to when the visual stimuli were 
unexpected, whilst others have argued against a top-down 
modulation of alpha-phase even when the targets were tem-
porally predictable (van Diepen et al., 2015). Additionally, in 

the present study, the visual stimuli were visible such that on 
average, identification accuracy was above threshold, whilst 
many previous studies reported a phase effect on perception 
when stimuli were near-threshold (see Busch et  al.,  2009; 
Mathewson et  al.,  2009). However, discrepancies found in 
the literature could also be due to contamination of the signal 
by target-locked, post-stimulus phase differences and tem-
poral distortions of these phase effect towards pre-stimulus 
latencies (Brüers & VanRullen, 2017), a scenario that likely 
explains the pattern of results observed in the time-frequency 
wITPCz analyses here. Overall, our results add to a growing 
body of studies casting doubt on the effect of pre-stimulus 
phase on visual perception (Benwell et al., 2017; van Diepen 
et al., 2015; Ruzzoli et al., 2019; Vigué-Guix et al., 2020).

In conclusion, the present findings substantiate a grow-
ing body of evidence linking pre-stimulus EEG alpha power 
to subjective rather than objective psychophysical measures. 
Hence, pre-stimulus alpha power represents a neural predic-
tor of the level of perceptual awareness, which is dissociated 
from perceptual sensitivity.
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