4,732 research outputs found

    LAI’s Lean Enterprise Value Business Simulation Aids in Mapping Enterprise Value Stream of Textron’s Sensor Fuzed Weapons Program

    Get PDF
    From August 24 through September 10, members of the Lean Aerospace Initiative (LAI), the Massachusetts Manufacturing Extension Program (Mass MEP), Rockwell Collins and Metis Design met with host company Textron Systems in an historic collaborative effort to map the enterprise value stream of Textron’s Sensor Fuzed Weapons (SFW) program. The workshop also included participation from the US Air Force, Alliant Techsystems, Cessna Aircraft, Herley Industries, and Pioneer Aerospace

    Cross-Document Pattern Matching

    Get PDF
    We study a new variant of the string matching problem called cross-document string matching, which is the problem of indexing a collection of documents to support an efficient search for a pattern in a selected document, where the pattern itself is a substring of another document. Several variants of this problem are considered, and efficient linear-space solutions are proposed with query time bounds that either do not depend at all on the pattern size or depend on it in a very limited way (doubly logarithmic). As a side result, we propose an improved solution to the weighted level ancestor problem

    BlindBuilder : a new encoding to evolve Lego-like structures

    Get PDF
    This paper introduces a new representation for assemblies of small Lego-like elements: structures are indirectly encoded as construction plans. This representation shows some interesting properties such as hierarchy, modularity and easy constructibility checking by definition. Together with this representation, efficient GP operators are introduced that allow efficient and fast evolution, as witnessed by the results on two construction problems that demonstrate that the proposed approach is able to achieve both compactness and reusability of evolved components

    Instantaneous Shape Sampling - a model for the γ\gamma-absorption cross section of transitional nuclei

    Get PDF
    The influence of the quadrupole shape fluctuations on the dipole vibrations in transitional nuclei is investigated in the framework of the Instantaneous Shape Sampling Model, which combines the Interacting Boson Model for the slow collective quadrupole motion with the Random Phase Approximation for the rapid dipole vibrations. Coupling to the complex background configurations is taken into account by folding the results with a Lorentzian with an energy dependent width. The low-energy energy portion of the γ\gamma- absorption cross section, which is important for photo-nuclear processes, is studied for the isotopic series of Kr, Xe, Ba, and Sm. The experimental cross sections are well reproduced. The low-energy cross section is determined by the Landau fragmentation of the dipole strength and its redistribution caused by the shape fluctuations. Collisional damping only wipes out fluctuations of the absorption cross section, generating the smooth energy dependence observed in experiment. In the case of semi-magic nuclei, shallow pygmy resonances are found in agreement with experiment

    Factors Influencing Sun Protection Behaviors among Patients with Skin Cancer: An Application of the Information-Motivation-Behavioral Skills Model

    Get PDF
    © 2019 by the Dermatology Nurses\u27 Association. This study aimed to assess predictors of sun protection behaviors based on the information-motivation-behavioral skills (IMB) model among people diagnosed with nonmelanoma skin cancer (NMSC). For this descriptive, cross-sectional study, a convenience sample of 311 patients with NMSC was recruited at a medical center in Mississippi. Patients were invited to complete a face- A nd content-valid, IMB-model-based questionnaire. The average age of the participants was 64.12 (±12.02) years, and most (58.8%) were male. Most participants indicated not using sun protection behaviors while outdoors. Findings showed that sun protection behaviors were directly predicted by self-efficacy (standardized path coefficient = 0.504, p \u3c.001) and social support (standardized path coefficient = 0.199, p =.010). In addition, sun protection behavior was indirectly predicted (through self-efficacy) by social support (standardized indirect effect = 0.160, p \u3c.001) and attitudes (standardized indirect effect = 0.192, p =.001). The explained variances for self-efficacy and sun protection behaviors were 43% and 35.4%, respectively. In conclusion, the IMB model appears to be a useful theoretical framework for predicting sun protection behaviors among patients with NMSC. Sun safety intervention programs should be developed based on this theoretical model for patients with NMSC

    Mirror Energy Differences at Large Isospin Studied through Direct Two-Nucleon Knockout

    Get PDF
    The first spectroscopy of excited states in 52Ni (Tz=2) and 51Co (Tz=-3/2) has been obtained using the highly selective two-neutron knockout reaction. Mirror energy differences between isobaric analogue states in these nuclei and their mirror partners are interpreted in terms of isospin nonconserving effects. A comparison between large scale shell-model calculations and data provides the most compelling evidence to date that both electromagnetic and an additional isospin nonconserving interactions for J=2 couplings, of unknown origin, are required to obtain good agreement.Comment: Accepted for publication in Physical Review Letter

    Noise storm continua: power estimates for electron acceleration

    Full text link
    We use a generic stochastic acceleration formalism to examine the power LinL_{\rm in} (ergs1{\rm erg s^{-1}}) input to nonthermal electrons that cause noise storm continuum emission. The analytical approach includes the derivation of the Green's function for a general second-order Fermi process, and its application to obtain the particular solution for the nonthermal electron distribution resulting from the acceleration of a Maxwellian source in the corona. We compare LinL_{\rm in} with the power LoutL_{\rm out} observed in noise storm radiation. Using typical values for the various parameters, we find that Lin102326L_{\rm in} \sim 10^{23-26} ergs1{\rm erg s^{-1}}, yielding an efficiency estimate ηLout/Lin\eta \equiv L_{\rm out}/L_{\rm in} in the range 10^{-10} \lsim \eta \lsim 10^{-6} for this nonthermal acceleration/radiation process. These results reflect the efficiency of the overall process, starting from electron acceleration and culminating in the observed noise storm emission.Comment: Accepted for publication in Solar Physic

    Nitrogen uptake and remobilization from pre‑ and post‑anthesis stages contribute towards grain yield and grain protein concentration in wheat grown in limited nitrogen conditions

    Get PDF
    Background In wheat, nitrogen (N) remobilization from vegetative tissues to developing grains largely depends on genetic and environmental factors. The evaluation of genetic potential of crops under limited resource inputs such as limited N supply would provide an opportunity to identify N-efficient lines with improved N utilisation efficiency and yield potential. We assessed the genetic variation in wheat recombinant inbred lines (RILs) for uptake, partitioning, and remobilization of N towards grain, its association with grain protein concentration (GPC) and grain yield. Methods We used the nested association mapping (NAM) population (195 lines) derived by crossing Paragon (P) with CIMMYT core germplasm (P × Cim), Baj (P × Baj), Watkins (P × Wat), and Wyalkatchem (P × Wya). These lines were evaluated in the field for two seasons under limited N supply. The plant sampling was done at anthesis and physiological maturity stages. Various physiological traits were recorded and total N uptake and other N related indices were calculated. The grain protein deviation (GPD) was calculated from the regression of grain yield on GPC. These lines were grouped into different clusters by hierarchical cluster analysis based on grain yield and N-remobilization efficiency (NRE). Results The genetic variation in accumulation of biomass at both pre- and post-anthesis stages were correlated with grain-yield. The NRE significantly correlated with aboveground N uptake at anthesis (AGNa) and grain yield but negatively associated with AGN at post-anthesis (AGNpa) suggesting higher N uptake till anthesis favours high N remobilization during grain filling. Hierarchical cluster analysis of these RILs based on NRE and yield resulted in four clusters, efficient (31), moderately efficient (59), moderately inefficient (58), and inefficient (47). In the N-efficient lines, AGNa contributed to 77% of total N accumulated in grains, while it was 63% in N-inefficient lines. Several N-efficient lines also exhibited positive grain protein deviation (GPD), combining high grain yield and GPC. Among crosses, the P × Cim were superior and N-efficient, while P × Wya responded poorly to low N input
    corecore