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Abstract. We study a new variant of the string matching problem
called cross-document string matching, which is the problem of index-
ing a collection of documents to support an efficient search for a pattern
in a selected document, where the pattern itself is a substring of another
document. Several variants of this problem are considered, and efficient
linear-space solutions are proposed with query time bounds that either
do not depend at all on the pattern size or depend on it in a very lim-
ited way (doubly logarithmic). As a side result, we propose an improved
solution to the weighted level ancestor problem.

1 Introduction

In this paper we study the following variant of the string matching prob-
lem that we call cross-document string matching: given a collection of
strings (documents) stored in a “database”, we want to be able to effi-
ciently search for a pattern in a given document, where the pattern itself
is a substring of another document. More formally, assuming we have a
set of documents T1, . . . , Tm, we want to answer queries about the occur-
rences of a substring Tk[i..j] in a document Tℓ.

This scenario may occur in various situations when we have to search
for a pattern in a text stored in a database, and the pattern is itself drawn
from a string from the same database. In bioinformatics, for example, a
typical project deals with a selection of genomic sequences, such as a
family of genomes of evolutionary related species. A common repetitive
task consists then in looking for genomic elements belonging to one of
the sequences in some other sequences. These elements may correspond
to genes, exons, mobile elements of any kind, regulatory patterns, etc.,
and their location (i.e. start and end positions) in the sequence of origin
is usually known from a genome annotation provided by a sequence data
repository (such as GenBank or any other). A similar scenario may occur
in other application fields, such as the bibliographic search for example.



In this paper, we study different versions of the cross-document string
matching problem. First, we distinguish between counting and reporting
queries, asking respectively about the number of occurrences of Tk[i..j]
in Tℓ or about the occurrences themselves. The two query types lead to
slightly different solutions. In particular, the counting problem uses the
weighted level ancestor problem [10, 1] to which we propose a new solution
with an improved complexity bound.

We further consider different variants of the two problems. The first
one is the dynamic version where new documents can be added to the
database. In another variant, called document counting and reporting, we
only need to respectively count or report the documents containing the
pattern, rather than counting or reporting pattern occurrences within a
given document. This version is very close to the document retrieval prob-

lem previously studied (see [15] and later papers referring to it), with the
difference that in our case the pattern is itself selected from the documents
stored in the database. Finally, we also consider succinct data structures
for the above problems, where we keep involved index data structure in
compressed form.

Let m be the number of stored strings and n the total length of all
strings. Our results are summarized below:

(i) for the counting problem, we propose a solution with query time
O(t + log log m), where t = min(

√
log occ/ log log occ, log log |P |),

P = Tk[i..j] is the searched substring and occ is the number of its
occurrences in Tℓ,

(ii) for the reporting problem, our solution outputs all the occurrences in
time O(log log m + occ),

(iii) in the dynamic case, when new documents can be dynamically added
to the database, we are able to answer counting queries in time
O(log n) and reporting queries in time O(log n + occ), whereas the
updates take time O(log n) per character,

(iv) for the document counting and document reporting problems, our
algorithms run in time O(log n) and O(t + ndocs) respectively, where
t is as above and ndocs is the number of reported documents,

(v) finally, we also present succinct data structures that support counting,
reporting, and document reporting queries in cross-document scenario
(see Theorems 6 and 7 in Section 4.3).

For problems (i)-(iv), the involved data structures occupy O(n) space.
Interestingly, in the cross-document scenario, the query times either do
not depend at all on the pattern length or depend on it in a very limited
(doubly logarithmic) way.



Throughout the paper positions in strings are numbered from 1. No-
tation T [i..j] stands for the substrings T [i]T [i+1] . . . T [j] of T , and T [i..]
denotes the suffix of T starting at position i.

2 Preliminaries

2.1 Basic Data Structures

We assume a basic knowledge of suffix trees and suffix arrays.
Besides using suffix trees for individual strings Ti, we will also be

using the generalized suffix tree for a set of strings T1, T2, . . . , Tm that can
be viewed as the suffix tree for the string T1$1T2$2 . . . Tm$m. A leaf in a
suffix tree for Ti is associated with a distinct suffix of Ti, and a leaf in
the generalized suffix tree is associated with a suffix of some document
Ti together with the index i of this document. We assume that for each
node v of a suffix tree, the number nv of leaves in the subtree rooted at v,
as well as its string depth d(v) can be recovered in constant time. Recall
that the string depth d(v) is the total length of strings labelling the edges
along the path from the root to v.

We will also use the suffix arrays for individual documents as well as
the generalized suffix array for strings T1, T2, . . . , Tm. Each entry of the
suffix array for Ti is associated with a distinct suffix of Ti and each entry
of the generalized suffix array for T1, . . . , Tm is associated with a suffix of
some document Ti and the index i of the document the suffix comes from.
We store these document indices in a separate array D, called document

array, such that D[i] = k if the i-th entry of the generalized suffix array
for T1, . . . , Tm corresponds to a suffix coming from Tk.

For each considered suffix array, we assume available, when needed,
two auxiliary arrays: an inverted suffix array and another array, called
the LCP-array, of longest common prefixes between each suffix and the
preceding one in the lexicographic order.

2.2 Weighted Level Ancestor Problem

The weighted level ancestor problem, defined in [10], is a generalization of
the level ancestor problem [6, 5] for the case when tree edges are assigned
positive weights.

Consider a rooted tree T whose edges are assigned positive integer
weights. For a node w, let weight(w) denote the total weight of the edges
on the path from the root to w; depth(w) denotes the usual tree depth of
w.



A weighted level ancestor query wla(v, q) asks, given a node v and
a positive integer q, for the ancestor w of v of minimal depth such that
weight(w) ≥ q (wla(v, q) is undefined if there is no such node w).

Two previously known solutions [10, 1] for weighted level ancestors
problem achieve O(log log W ) query time using linear space, where W
is the total weight of all tree edges. Our data structure also uses O(n)
space, but achieves a faster query time in many special cases. We prove
the following result.

Theorem 1. There exists an O(n) space data structure that answers

weighted ancestor query wla(v, q) in O(min(
√

log g/ log log g, log log q))
time, where g = min(depth(wla(v, q)), depth(v) − depth(wla(v, q))).

If every internal node is a branching node, we obtain the following
corollary.

Corollary 1. Suppose that every internal node in T has at least two chil-

dren. There exists an O(n) space data structure that finds w = wla(v, q)
in O(

√
log nw/ log log nw) time, where nw is the number of leaves in the

subtree of w.

Our approach combines the heavy path decomposition technique of [1]
with efficient data structures for finger searching in a set of integers. The
proof is given in the Appendix.

3 Cross-document Pattern Counting and Reporting

3.1 Counting

In this section we consider the problem of counting occurrences of a pat-
tern Tk[i..j] in a document Tℓ.

Our data structure consists of the generalized suffix array GSA for
documents T1, . . . , Tm and individual suffix trees Ti for every document
Ti.

For every suffix tree Tℓ we store a data structure of Theorem 1 support-
ing weighted level ancestor queries on Tℓ. We also augment the document
array D with an O(n)-space data structure that answers queries rank(k, i)
(number of entries storing k before position i in D) and select(k, i) (i-th
entry from the left storing k). Using the result of [13], we can support such
rank and select queries in O(log log m) and O(1) time respectively. More-
over, we construct a data structure that answers range minima queries
(RMQ) on the LCP array: for any 1 ≤ r1 ≤ r2 ≤ n, find the minimum



among LCP [r1], . . . LCP [r2]. There exists a linear space RMQ data struc-
ture that supports queries in constant time, see e.g., [4]. An RMQ query
on the LCP array computes the length of the longest common prefix of
two suffixes GSA[r1] and GSA[r2], denoted LCP (r1, r2).

Our counting algorithm consists of two stages. First, using GSA, we
identify a position p of Tℓ at which the query pattern Tk[i..j] occurs, or
determine that no such p exists. Then we find the locus of Tk[i..j] in the
suffix tree Tℓ using a weighted ancestor query.

Let r be the position of Tk[i..] in the GSA. We find indexes r1 =
select(ℓ, rank(r, ℓ)) and r2 = select(ℓ, rank(r, ℓ)+1) in O(log log m) time.
GSA[r1] (resp. GSA[r2]) is the closest suffix from document Tℓ that pre-
cedes (resp. follows) Tk[i..] in the lexicographic order of suffixes. Observe
now that Tk[i..j] occurs in Tℓ if and only if either LCP (r1, r) or LCP (r, r2)
(or both) is no less than j − i+1. If this holds, then the starting position
p of GSA[r1] (respectively, starting position of GSA[r2]) is the position
of Tk[i..j] in Tℓ. Once such a position p is found, we jump to the leaf v of
Tℓ that contains the suffix Tℓ[p..].

The weighted level ancestor u = wla(v, (j − i + 1)) is the locus of
Tk[i..j] in Tℓ. This is because Tℓ[p..p+ j− i] = Tk[i..j]. By Corollary 1, we
can find node u in O(

√
log nu/ log log nu) time, where nu is the number

of leaf descendants of u. Since u is the locus node of Tk[i..j], nu is the
number of occurrences of Tk[i..j] in Tℓ. By Theorem 1, we can find u in
O(log log(j − i + 1)) time.

Summing up, we obtain the following Theorem.

Theorem 2. For any 1 ≤ k, ℓ ≤ m and 1 ≤ i ≤ j ≤ |Tk|, we can count

the number of occurrences of Tk[i..j] in Tℓ in O(t+log log m) time, where

t = min(
√

log occ/ log log occ, log log(j − i + 1)) and occ is the number of

occurrences. The underlying indexing structure takes O(n) space and can

be constructed in O(n) time.

3.2 Reporting

A reporting query asks for all occurrences of a substring Tk[i..j] in Tℓ.

Compared to counting queries, we make a slight change in the data
structures: instead of using suffix trees for individual documents Ti, we
use suffix arrays. The rest of the data structures is unchanged.

We first find an occurrence of Tk[i..j] in Tℓ (if there is one) with the
method described in Section 3.1. Let p be the position of this occurrence
in Tℓ. We then jump to the corresponding entry r of the suffix array SAℓ

for the document Tℓ. Let LCPℓ be the LCP-array of SAℓ. Starting with



entry r, we visit adjacent entries t of SAℓ moving both to the left and
to the right as long as LCPℓ[t] ≥ j − i + 1. While this holds, we report
SAℓ[t] as an occurrence of Tk[i..j]. It is easy to observe that the procedure
is correct and that no occurrence is missing. As a result, we obtain the
following theorem.

Theorem 3. All the occurrences of Tk[i..j] in Tℓ can be reported in

O(log log m + occ) time, where occ is the number of occurrences. The

underlying indexing structure takes O(n) space and can be constructed in

O(n) time.

4 Variants of the Problem

4.1 Dynamic Counting and Reporting

In this section we focus on a dynamic version of counting and reporting
problems, where the only dynamic operation consists in adding a docu-

ment to the database4.
Recall that in the static case, counting occurrences of Tk[i..j] in Tℓ is

done through the following two steps (Section 3.1):

1. compute position p of some occurrence of Tk[i..j] in Tℓ,
2. in the suffix tree of Tℓ, find the locus of string Tℓ[p..p + j − i], and

retrieve the number of leaves in the subtree rooted at u.

For reporting queries (Section 3.2), Step 1 is basically the same, while
Step 2 is different and uses an individual suffix array for Tℓ.

In the dynamic framework, we follow the same general two-step sce-
nario. Note first that since Step 2, for both counting and reporting, uses
data structures for individual documents only, it trivially applies to the
dynamic case without changes. However, Step 1 requires serious modifi-
cations that we describe below.

Since the suffix array is not well-suited for dynamic updates, at Step 1
we will use the generalized suffix tree for T1, T2, . . . , Tm hereafter denoted
GST . For each suffix of T1, T2, . . . , Tm we store a pointer to the leaf of
GST corresponding to this suffix.

We maintain a dynamic doubly-linked list EL corresponding to the
Euler tour of the current GST . Each internal node of GST is stored in
two copies in EL, corresponding respectively to the first and last visits

4 document deletions are also possible to support but require some additional con-
structions that are left to the extended version of this paper



of the node during the Euler tour. Leaves of GST are kept in one copy.
Observe that the leaves of GST appear in EL in the “left-to-right” order,
although not consecutively.

On EL, we maintain the data structure of [3] which allows, given two
list elements, to determine their order in the list in O(1) time (see also
[9]). Insertions of elements in the list are supported in O(1) time too.

Furthermore, we maintain a balanced tree, denoted BT , whose leaves
are elements of EL. Note that the size of EL is bounded by 2n (n is the
size of GST ) and the height of BT is O(log n). Since the leaves of GST
are a subset of the leaves of BT , we call them suffix leaves to avoid the
ambiguity.

Each internal node u of BT stores two kinds of information: (i) the
rightmost and leftmost suffix leaves in the subtree of BT rooted at u, (ii)
minimal LCP value among all suffix leaves in the subtree of BT rooted
at u.

Finally, we will also need an individual suffix array for each inserted
document Ti.

We are now in position to describe the algorithm of Step 1. Like in
the static case, we first retrieve the leaf of GST corresponding to suffix
Tk[i..]. To identify a position of an occurrence of Tk[i..j] in Tℓ, we have to
examine the two closest elements in the list of leaves of GST , one from
right and from left, corresponding to suffixes of Tℓ. To find these two
suffixes, we perform a binary search on the suffix array for Tℓ using order
queries of [3] on EL. This step takes O(log |Tℓ|) time.

We then check if at least one of these two suffixes corresponds to
an occurrence of Tk[i..j] in Tℓ. In a similar way to Section 3, we have to
compute the longest common prefix between each of these two suffixes and
Tk[i..], and compare this value with (j−i+1). This amounts to computing
the minimal LCP value among all the suffixes of the corresponding range.

This can be done in O(log n) time by using a standard range trees
approach [?]: for any sublist of EL we can retrieve O(log n) nodes vi that
cover it. The least among all minimal LCP values stored in nodes vi is
the minimal LCP value for the specified range of suffixes.

The query time bounds are summarized in the following lemma.

Lemma 1. Using the above data structures, counting and reporting all

occurrences of Tk[i..j] in Tℓ can be done respectively in time O(log n) and

time O(log n + occ), where occ is the number of reported occurrences.

We now explain how the involved data structures are updated. Sup-
pose that we add a new document Tm+1. Extending the generalized suffix



tree by Tm+1 is done in time O(|Tm+1|) by McCreight’s or Ukkonen’s
algorithm, i.e. in O(1) amortized time per symbol.

When a new node v is added to a suffix tree, the following updates
should be done (in order):

(i) insert v at the right place of the list EL (in two copies if v is an
internal node),

(ii) rebalance the tree BT if needed,

(iii) if v is a leaf of GST (i.e. a suffix leaf of BT ), update LCP values and
rightmost/leftmost suffix leaf information in BT ,

To see how update (i) works, we have to recall how suffix tree is
updated when a new document is inserted. Two possible updates are
creation of a new internal node v by splitting an edge into two (edge
subdivision) and creating a new leaf u as a child of an existing node. In
the first case, we insert the first copy of v right after the first copy of its
parent, and the second copy right before the second copy of its parent.
In the second case, the parent of u has already at least one child, and we
insert u either right after the second (or the only) copy of its left sibling,
or right before the first (or the only) copy of its right sibling.

Rebalancing the tree BT (update (ii)) is done using standard methods.
Observe that during the rebalancing we may have to adjust the LCP and
rightmost/leftmost suffix leaf information for internal nodes, but this is
easy to do as only a constant number of local modifications is done at
each level.

Update (iii) is triggered when a new leaf u is created in GST and
added to EL. First of all, we have to compute the LCP value for u and
possibly to update the LCP value of the next suffix leaf u′ to the right
of u in EL. This is done in O(1) time as follows. At the moment when u
is created, we memorize the string depth of its parent D = d(parent(u)).
Recall that the parent of u already has at least one child before u is
created. If u is neither the leftmost nor the rightmost child of its parent,
then we set LCP (u) = D and LCP (u′) remains unchanged (actually
it also equals D). If u is the leftmost child of its parent, then we set
LCP (u) = LCP (u′) and then LCP (u′) = D. Finally, if u is the rightmost
child, then LCP (u) = D and LCP (u′) remains unchanged.

We then have to follow the path in BT from the new leaf u to the
root and possibly update the LCP and rightmost/leftmost suffix leaf
information for all nodes on this path. These updates are straightforward.
Furthermore, during this traversal we also identify suffix leaf u′ (as the
leftmost child of the first right sibling encountered during the traversal),



update its LCP value and, if necessary, the LCP values on the path from
u′ to the root of BT . All these steps take time O(log n).

Thus, updates of all involved data structures take O(log n) time per
symbol. The following theorem summarizes the results of this section.

Theorem 4. In the case when documents can be added dynamically, the

number of occurrences of Tk[i..j] in Tℓ can be computed in time O(log n)
and reporting these occurrences can be done in time O(log n+occ), where

occ is their number. The underlying data structure occupies O(n) space

and an update takes O(log n) time per character.

4.2 Document Counting and Reporting

Consider a static collection of documents T1, . . . , Tm. In this section we
focus on document reporting and counting queries: report or count the
documents which contain at least one occurrence of Tk[i..j], for some
1 ≤ k ≤ m and i ≤ j.

For both counting and reporting, we use the generalized suffix tree,
generalized suffix array and the document array D for T1, T2, . . . , Tm.
We first retrieve the leaf of the generalized suffix tree labelled by Tk[i..]
and compute its highest ancestor u of string depth at least j − i + 1,
using the weighted level ancestor technique of Section 2.2. The suf-
fixes of T1, T2, . . . , Tm starting with Tk[i..j] (i.e. occurrences of Tk[i..j])
correspond then to the leaves of the subtree rooted at u, and vice
versa. As shown in Section 3.1, this step takes O(t) time, where t =
min(

√
log occ/ log log occ, log log(j − i + 1)) and occ is the number of oc-

currences of Tk[i..j] (this time in all documents).
Once u has been computed, we retrieve the interval [left(u)..right(u)]

of ranks of all the leaves under interest. We are then left with the problem
of counting/reporting distinct values in D[left(u)..right(u)]. This prob-
lem is exactly the same as the color counting/ color reporting problem
that has been studied extensively (see e.g., [12] and references therein).

For color reporting queries, we can use the solution of [15] based on
an O(n)-space data structure for RMQ, applied to (a transform of) the
document array D. The pre-processing time is O(n). Each document is
then reported in O(1) time, i.e. all relevant documents are reported in
O(ndocs) time, where ndocs is their number. The whole reporting query
then takes time O(t + ndocs) for t defined above.

For counting, we use the solution described in [7]. The data structure
requires O(n) space and a color counting query takes O(log n) time. The
following theorem presents a summary.



Theorem 5. We can store a collection of documents T1, . . . , Tm in a lin-

ear space data structure, so that for any pattern P = Tk[i..j] all documents

that contain P can be reported and counted in O(t + ndocs) and O(log n)
time respectively. Here t = min(

√
log occ/ log log occ, log log |P |), ndocs

is the number of documents that contain P and occ is the number of

occurrences of P in all documents.

4.3 Compact Counting, Reporting and Document Reporting

In this section, we show how our reporting and counting problems can be
solved on succinct data structures [16].

Reporting and Counting. Our compact solution is based on com-
pressed suffix arrays [14]. A compressed suffix array for a text T uses
|CSA| bits of space and enables us to retrieve the position of the suf-
fix of rank r, the rank of a suffix T [i..], and the character T [i] in time
Lookup(n). Different trade-offs between space usage and query time can
be achieved (see [16] for a survey).

Our data structure consists of a compressed generalized suffix array
CSA for T1, . . . , Tm and compressed suffix arrays CSAi for each doc-
ument Ti. In [17] it was shown that using O(n) extra bits, the length
of the longest common prefix of any two suffixes can be computed in
O(Lookup(n)) time. Besides, the ranks of any two suffixes Tk[s..] and
Tℓ[p..] can be compared in O(Lookup(n)) time: it suffices to compare
Tℓ[p + f ] with Tk[s + f ] for f = LCP (Tk[s..], Tℓ[p..]).

Note that ranks of the suffixes of Tℓ starting with Tk[i..j] form an
interval [r1..r2]. We use a binary search on the compressed suffix array of
Tℓ to find r1 and r2. At each step of the binary search we compare a suffix
of Tℓ with Tk[i..]. Therefore [r1..r2] can be found in O(Lookup(n) · log n)
time. Obviously, the number of occurrences of Tk[i..j] in Tℓ is r2 − r1.
To report the occurrences, we compute the suffixes of Tℓ with ranks in
interval [r1..r2].

Theorem 6. All occurrences of Tk[i..j] in Tℓ can be counted in

O(Lookup(n)·log n) time and reported in O((log n+occ)Lookup(n)) time,

where occ is the number of those. The underlying indexing structure takes

2|CSA| + O(n + m log n
m) bits of memory.

Document Reporting Again, we use a binary search on the generalized
suffix array to find the rank interval [r1..r2] of suffixes that start with
Tk[i..j]. This can be done in O(Lookup(n) · log n) time.



In [18], it was shown how to report, for any 1 ≤ r1 ≤ r2 ≤ n, all
distinct documents Tf such that at least one suffix of Tf occurs at position
r, r1 ≤ r ≤ r2, of the generalized suffix array. The construction uses
O(n + m log n

m) additional bits, and all relevant documents are reported
in O(Lookup(n) · ndocs) time, where ndocs is the number of documents
that contain Tk[i..j]. Summing up, we obtain the following result.

Theorem 7. All documents containing Tk[i..j] can be reported in

O((log n + ndocs)Lookup(n)) time, where ndocs is the number of those.

The underlying indexing structure takes 2|CSA|+ O(n + m log n
m) bits of

space.
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Appendix: Proof of Theorem 1

Here we prove Theorem 1. We use the heavy path decomposition tech-
nique of [1].

A path π in T is heavy if every node u on π has at most twice as
many nodes in its subtree as its child v on π. A tree T can be decomposed
into paths using the following procedure: we find the longest heavy path
πr that starts at the root of T and remove all edges of πr from T . All
remaining vertices of T belong to a forest; we recursively repeat the same
procedure in every tree of that forest.

We can represent the decomposition into heavy paths using a tree T.
Each node vj in T corresponds to a heavy path πj in T . A node vj is a
child of a node vi in T if the head of πj (i.e., the highest node in πj) is
a child of some node u ∈ πi. Some node in πi has at least twice as many
descendants as each node in πj ; hence, T has height O(log n).



O(n log n)-Space Solution. Let pj denote a root-to-leaf path in T. For
a node v in T let weight(v) denote the weight of the head of π, where
π is the heavy path represented by v in T. We store a data structure
D(pj) that contains the values of weight(v) for all nodes v ∈ pj . D(pj)
contains O(log n) elements; hence, we can find the highest node v ∈ pj

such that weight(v) ≥ q in O(1) time. This can be achieved by storing
the weights of all nodes from pj in the q-heap [11].

For every heavy path πj , we store the data structure E(πj) from [2]
that contains the weights of all nodes u ∈ πj and supports the fol-
lowing queries: for an integer q, find the lightest node u ∈ πj such
that weight(u) ≥ q. Using Theorem 1.5 in [2], we can find such a
node u ∈ πj in O(

√
log n′/ log log n′) time where n′ = min(nh, nl),

nh = |{ v ∈ pj |weight(v) > weight(u) }|, and nl = |{ v ∈
pj |weight(v) < weight(u) }|. Moreover, we can also find the node u in
O(log log q) time; we will show how this can be done in the full ver-
sion of this paper. Thus E(πj) can be modified to support queries in
O(min(

√
log n′/ log log n′, log log q)) time.

For each node u ∈ T we store a pointer to the heavy path π that
contains u and to the corresponding node v ∈ T.

A query wla(v, q) can be answered as follows. Let v denote the node
in T that corresponds to the heavy path containing v. Let pj be an
arbitrary root-to-leaf path in T that also contains v. Using D(pj) we can
find the highest node u ∈ pj , such that weight(u) ≥ q in O(1) time.
Let πt denote the heavy path in T that corresponds to the parent of u,
and πs denote the path that corresponds to u. If the weighted ancestor
wla(v, q) is not the head of πs, then wla(v, q) belongs to the path πt. Using
E(πt), we can find u = wla(v, q) in O(min(

√
log n′/ log log n′, log log q))

time where n′ = min(nh, nl), nh = |{ v ∈ πt |weight(v) > weight(u) }|,
and nl = |{ v ∈ πt |weight(v) < weight(u) }|.

All data structures E(πi) use linear space. Since there are O(n) leaves
in T and each path pi contains O(log n) nodes, all D(pi) use O(n log n)
space.

Lemma 2. There exists an O(n log n) space data structure that finds the

weighted level ancestor u in O(min(
√

log n′/ log log n′, log log q)) time.

O(n)-Space Solution. We can reduce the space from O(n log n) to O(n)
using a micro-macro tree decomposition. Let T0 be a tree induced by
the nodes of T that have at least log n/8 descendants. The tree T0 has
at most O(n/ log n) leaves. We construct the data structure described
above for T0; since T0 has O(n/ log n) leaves, its heavy-path tree T0 also



has O(n/ log n) leaves. Therefore all structures D(pj) use O(n) words of
space. All E(πi) also use O(n) words of space. If we remove all nodes of
T0 from T , the remaining forest F consists of O(n) nodes. Every tree Ti,
i ≥ 1, in F consists of O(log n) nodes. Nodes of Ti are stored in a data
structure that uses linear space and answers weighted ancestor queries in
O(1) time. This data structure will be described later in this section.

Suppose that a weighted ancestor wla(v, q) should be found. If v ∈ T0,
we answer the query using the data structure for T0. If v belongs to some
Ti for i ≥ 1, we check the weight wr of root(Ti). If wr ≤ q, we search for
wla(v, q) in Ti. Otherwise we identify the parent v1 of root(Ti) and find
wla(v1, q) in T0. If wla(v1, q) in T0 is undefined, then wla(v, q) = root(Ti).

Data Structure for a Small Tree. It remains to describe the data structure
for a tree Ti, i ≥ 1. Since Ti contains a small number of nodes, we can
answer weighted level ancestor queries on Ti using a look-up table V .
V contains information about any tree with up to log n/8 nodes, such
that node weights are positive integers bounded by log n/8. For any such
tree T̃ , for any node v of T̃ , and for any integer q ∈ [1, log n/8], we
store the pointer to wla(v, q) in T̃ . There are O(2log n/4) different trees
T̃ (see e.g., [5] for a simple proof); for any T̃ , we can assign weights
to nodes in less than (log n/8)! ways. For any weighted tree T̃ there
are at most (log n)2/64 different pairs v, q. Hence, the table V contains
O(2log n/4(log n)2(log n/8)!) = o(n) entries. We need only one look-up
table V for all mini-trees Ti.

We can now answer a weighted level ancestor query on Ti using re-
duction to rank space. The rank of a node u in a tree T is defined as
rank(u, T ) = |{ v ∈ T |weight(v) ≤ weight(u) }|. The successor of an
integer q in a tree T is the lightest node u ∈ T such that weight(u) ≥ q.
The rank rank(q, T ) of an integer q is defined as the rank of its succes-
sor. Let rank(T ) denote the tree T in which the weight of every node is
replaced with its rank. The weight of a node u ∈ T is not smaller than
q if an only if rank(u, T ) ≥ rank(q, T ). Therefore we can find wla(v, q)
in a small tree Ti, i ≥ 1, as follows. For every Ti we store a pointer to
T̃i = rank(Ti). Given a query wla(v, q), we find rank(q, Ti) in O(1) time
using a q-heap [11]. Let v′ be the node in T̃i that corresponds to the node
v. We find u′ = wla(v′, rank(q, Ti)) in T̃i using the table V . Then the node
u in Ti that corresponds to u′ is the weighted level ancestor of v.


