114 research outputs found

    Increased sialylation of site specific O-glycoforms of hemopexin in liver disease

    Get PDF
    Additional file 1 . Supplemental methods, figures and tables. SM 1.1. Mapping of the O-glycosylation sites. SM 1.2. Beta elimination and mass spectrometric analysis of HPX O-glycans. Table S1. Basic characteristics of disease-free controls and HALT-C participants. Table S2. The impact of IFN treatment on S-HPX. Groups of fibrotic and cirrhotic participants in the HALT-C trial were separated into the IFN treated and control arms. Table S3. Model estimates for logistic regression model in discovery set. Table S4. S-HPX measurement in the discovery and validation sets of participants. Figure S1. Precursor mass spectra confirmation of complete desialylation of HPX using 2M Acetic acid. Figure S2. ETD spectra of sialidase-treated O-glycopeptides corresponding to HILIC fractions of mono- (top), bis- (middle), and triply-glycosylated (bottom) O-glycopeptide of HPX. Figure S3. Direct quantification of S-HPX at progressing stages of liver disease divided by gender (left) and race (right; CA Caucasian, AA African-American). Figure S4. Significant associations of S-HPX and other clinical variables. Figure S5. Quantification of detected N-glycopeptides at three different N-glycosylation sequons (N64, N187 and N453) of HPX

    Anti-human Interleukin(IL)-4 Clone 8D4-8 Cross-Reacts With Myosin-9 Associated With Apoptotic Cells and Should Not Be Used for Flow Cytometry Applications Querying IL-4 Expression

    Get PDF
    Interleukin(IL)-4 is produced by T cells and other leukocytes and is a critical mediator of monocyte and B cell responses. During routine flow cytometry panel validation for the investigation of intracellular cytokines, we observed unique IL-4 expression patterns associated with the widely available monoclonal antibody 8D4-8. Namely, IL-4 (8D4-8) expression was observed in the absence of cellular activation and enhanced following staurosporine exposure. Mass spectrometry analysis of immunoprecipitates from peripheral blood lymphocytes (PBL) revealed that 8D4-8 cross-reacts with the ubiquitous cytoskeletal protein myosin-9. We confirmed these results by western blotting immunoprecipitates, using immunofluorescence among staurosporine-treated Caco-2 cells, and by surface-labeling PBL for 8D4-8 and myosin-9 and analyzing by flow cytometry. Although previously reported from several independent groups, we found no evidence to support the hypothesis that IL-4 is produced by apoptotic cells. Rather, this appears to have been myosin-9. Our data indicate clone 8D4-8 should not be used in the flow cytometric study of IL-4. Furthermore, our work calls for a reevaluation of previous flow cytometric studies that have used this clone for IL-4 analysis and highlights the importance of validation in antibody-based assays

    Human plasma protein N-glycosylation

    Full text link

    A multiplexed microflow LC–MS/MS-PRM assay for serologic quantification of IgG N- and HPX O- glycoforms in liver fibrosis

    No full text
    Abstract Targeted quantification of glycoproteins has not reached its full potential because of limitations of the existing analytical workflows. In this study, we introduce a targeted microflow LC–MS/MS-PRM method for the quantification of multiple glycopeptides in unfractionated serum samples. The entire preparation of 16 samples in a batch is completed within 3 h, and the LC–MS quantification of all the glycoforms in a sample is completed in 15 min in triplicate, including online capture and desalting. We demonstrate applicability of the workflow on a multiplexed quantification of eight N-glycoforms of immunoglobulin G (IgG) together with two O-glycoforms of hemopexin (HPX). We applied the assay to a serologic study of fibrotic liver disease in patients of HCV etiology. The results document that specific IgG- and HPX-glycoforms detect efficiently fibrotic disease of different degree, and suggest that the LC–MS/MS-PRM assays may provide rapid and reproducible biomarker assay targeting simultaneously the N- and O-glycoforms of the peptides. We propose that such high throughput multiplexed methods may advance the clinical use of the LC–MS/MS assays

    Quantification of Fucosylated Hemopexin and Complement Factor H in Plasma of Patients with Liver Disease

    No full text
    Enhanced fucosylation has been suggested as a marker for serologic monitoring of liver disease and hepatocellular carcinoma (HCC). We present a workflow for quantitative site-specific analysis of fucosylation and apply it to a comparison of hemopexin (HPX) and complement factor H (CFH), two liver-secreted glycoproteins, in healthy individuals and patients with liver cirrhosis and HCC. Label-free LC-MS quantification of glycopeptides derived from these purified glycoproteins was performed on pooled samples (2 pools/group, 5 samples/pool) and complemented by glycosidase assisted analysis using sialidase and endoglycosidase F2/F3, respectively, to improve resolution of glycoforms. Our analysis, presented as relative abundance of individual fucosylated glycoforms normalized to the level of their nonfucosylated counterparts, revealed a consistent increase in fucosylation in liver disease with significant site- and protein-specific differences. We have observed the highest microheterogeneity of glycoforms at the N187 site of HPX, absence of core fucosylation at N882 and N911 sites of CFH, or a higher degree of core fucosylation in CFH compared to HPX, but we did not identify changes differentiating HCC from matched cirrhosis samples. Glycosidase assisted LC-MS-MRM analysis of individual patient samples prepared by a simplified protocol confirmed the quantitative differences. Transitions specific to outer arm fucose document a disease-associated increase in outer arm fucose on both bi- and triantennary glycans at the N187 site of HPX. Further verification is needed to confirm that enhanced fucosylation of HPX and CFH may serve as an indicator of premalignant liver disease. The analytical strategy can be readily adapted to analysis of other proteins in the appropriate disease context

    Glucose induces anion conductance and cytosol-to-membrane transposition of ICln in INS-1E rat insulinoma cells

    No full text
    The metabolic coupling of insulin secretion by pancreatic beta cells is mediated by membrane depolarization due to increased glucose-driven ATP production and closure of K(ATP) channels. Alternative pathways may involve the activation of anion channels by cell swelling upon glucose uptake. In INS-1E insulinoma cells superfusion with an isotonic solution containing 20 mM glucose or a 30% hypotonic solution leads to the activation of a chloride conductance with biophysical and pharmacological properties of anion currents activated in many other cell types during regulatory volume decrease (RVD), i.e. outward rectification, inactivation at positive membrane potentials and block by anion channel inhibitors like NPPB, DIDS, 4-hydroxytamoxifen and extracellular ATP. The current is not inhibited by tolbutamide and remains activated for at least 10 min when reducing the extracellular glucose concentration from 20 mM to 5 mM, but inactivates back to control levels when cells are exposed to a 20% hypertonic extracellular solution containing 20 mM glucose. This chloride current can likewise be induced by 20 mM 3-Omethylglucose, which is taken up but not metabolized by the cells, suggesting that cellular sugar uptake is involved in current activation. Fluorescence resonance energy transfer (FRET) experiments show that chloride current activation by 20 mM glucose and glucose-induced cell swelling are accompanied by a significant, transient redistribution of the membrane associated fraction of ICln, a multifunctional 'connector hub' protein involved in cell volume regulation and generation of RVD currents
    • …
    corecore