22 research outputs found

    A model for the collapse of the edge when two transitions routes compete

    Full text link
    The transition to turbulence in many shear flows proceeds along two competing routes, one linked with finite-amplitude disturbances and the other one originating from a linear instability, as in e.g. boundary layer flows. The dynamical systems concept of edge manifold has been suggested in the subcritical case to explain the partition of the state space of the system. This investigation is devoted to the evolution of the edge manifold when a linear stability is added in such subcritical systems, a situation poorly studied despite its prevalence in realistic fluid flows. In particular the fate of the edge state as a mediator of transition is unclear. A deterministic three-dimensional model is suggested, parametrised by the linear instability growth rate. The edge manifold evolves topologically, via a global saddle-loop bifurcation, from the separatrix between two attraction basins to the mediator between two transition routes. For larger instability rates, the stable manifold of the saddle point increases in codimension from 1 to 2 after an additional local saddle node bifurcation, causing the collapse of the edge manifold. As the growth rate is increased, three different regimes of this model are identified, each one associated with a flow case from the recent hydrodynamic literature. A simple nonautonomous generalisation of the model is also suggested in order to capture the complexity of spatially developing flows.Comment: 12 pages, 10 figures, under review in Phys. Rev.

    Multistability of elasto-inertial two-dimensional channel flow

    Full text link
    Elasto-inertial turbulence (EIT) is a recently discovered two-dimensional chaotic flow state observed in dilute polymer solutions. It has been hypothesised that the dynamical origins of EIT are linked to a center-mode instability, whose nonlinear evolution leads to a travelling wave with an 'arrowhead' structure in the polymer conformation, a structure also observed instantaneously in simulations of EIT. In this work we conduct a suite of two-dimensional direct numerical simulations spanning a wide range of polymeric flow parameters to examine the possible dynamical connection between the arrowhead and EIT. Our calculations reveal (up to) four co-existent attractors: the laminar state and a steady arrowhead, along with EIT and a 'chaotic arrowhead'. The steady arrowhead is stable for all parameters considered here, while the final pair of (chaotic) flow states are visually very similar and can be distinguished only by the presence of a weak polymer arrowhead structure in the 'chaotic arrowhead' regime. Analysis of energy transfers between the flow and the polymer indicates that both chaotic regimes are maintained by an identical near-wall mechanism and that the weak arrowhead does not play a role. Our results suggest that the arrowhead is a benign flow structure that is disconnected from the self-sustaining mechanics of EIT.Comment: 17 pages, 10 figure

    The edge as a Lagrangian Coherent Structure in a high-dimensional state space

    Full text link
    Dissipative dynamical systems characterised by two basins of attraction are found in many physical systems, notably in hydrodynamics where laminar and turbulent regimes can coexist. The state space of such systems is structured around a dividing manifold called the edge, which separates trajectories attracted by the laminar state from those reaching the turbulent state. We apply here concepts and tools from Lagrangian data analysis to investigate this edge manifold. This approach is carried out in the state space of automous arbitrarily high-dimensional dissipative systems, in which the edge manifold is re-interpreted as a Lagrangian Coherent Structure (LCS). Two different diagnostics, finite-time Lyapunov exponents and Lagrangian Descriptors, are used and compared with respect to their ability to identify the edge and to their scalability. Their properties are illustrated on several low-order models of subcritical transition of increasing dimension and complexity, as well on well-resolved simulations of the Navier-Stokes equations in the case of plane Couette flow. They allow for a mapping of the global structure of both the state space and the edge manifold based on quantitative information. Both diagnostics can also be used to generate efficient bisection algorithms to approach asymptotic edge states, which outperform classical edge tracking.Comment: 16 pages, 10 figures, Accepted in Phys. Rev. Researc

    Inertial enhancement of the polymer diffusive instability

    Full text link
    Beneitez et al. (2023b) have recently discovered a new linear "polymer diffusive instability" (PDI) in inertialess viscoelastic rectilinear shear flow of a FENE-P fluid with polymer stress diffusion. Here, we examine the impact of inertia on the PDI, which we delineate for both plane Couette and channel configurations under varying Weissenberg number WW, polymer stress diffusivity ε\varepsilon, solvent-to-total viscosity β\beta and Reynolds number ReRe, considering Oldroyd-B and FENE-P constitutive relations. Both the prevalence of the instability in parameter space and the associated growth rates are found to significantly increase with ReRe. For instance, as ReRe increases with β\beta fixed, the instability emerges at progressively lower values of WW and ε\varepsilon than in the inertialess limit, and the associated growth rates increase linearly with ReRe when all other parameters are fixed. This strengthening of PDI with inertia and the fact that stress diffusion is always present in time-stepping algorithms, either implicitly as part of the scheme or explicitly as a stabiliser, implies that the instability is likely operative in computational work using the popular Oldroyd-B and FENE-P constitutive models. The fundamental question now is whether PDI is physical and observable in experiments, or is instead an artifact of the constitutive models that must be suppressed.Comment: 10 pages, 3 figure

    La Pena de Privación de Libertad en la Legislación Militar.

    Get PDF
    Este trabajo de fin de grado tiene por finalidad analizar la actual regulación de la pena privativa de libertad en el Código Penal Militar de 2015, así como las particularidades que presenta dicha pena en cuanto a su cumplimiento. Se revisará brevemente el antiguo CPM de 1985, determinando el ámbito y los antecedentes históricos de la jurisdicción militar, hasta llegar al análisis de la pena privativa de libertad que se encuentra recogida en la Ley Orgánica 14/2015 de 14 de octubre mediante la cual se aprueba el nuevo Código Penal Militar

    Effectiveness of an intervention for improving drug prescription in primary care patients with multimorbidity and polypharmacy:Study protocol of a cluster randomized clinical trial (Multi-PAP project)

    Get PDF
    This study was funded by the Fondo de Investigaciones Sanitarias ISCIII (Grant Numbers PI15/00276, PI15/00572, PI15/00996), REDISSEC (Project Numbers RD12/0001/0012, RD16/0001/0005), and the European Regional Development Fund ("A way to build Europe").Background: Multimorbidity is associated with negative effects both on people's health and on healthcare systems. A key problem linked to multimorbidity is polypharmacy, which in turn is associated with increased risk of partly preventable adverse effects, including mortality. The Ariadne principles describe a model of care based on a thorough assessment of diseases, treatments (and potential interactions), clinical status, context and preferences of patients with multimorbidity, with the aim of prioritizing and sharing realistic treatment goals that guide an individualized management. The aim of this study is to evaluate the effectiveness of a complex intervention that implements the Ariadne principles in a population of young-old patients with multimorbidity and polypharmacy. The intervention seeks to improve the appropriateness of prescribing in primary care (PC), as measured by the medication appropriateness index (MAI) score at 6 and 12months, as compared with usual care. Methods/Design: Design:pragmatic cluster randomized clinical trial. Unit of randomization: family physician (FP). Unit of analysis: patient. Scope: PC health centres in three autonomous communities: Aragon, Madrid, and Andalusia (Spain). Population: patients aged 65-74years with multimorbidity (≥3 chronic diseases) and polypharmacy (≥5 drugs prescribed in ≥3months). Sample size: n=400 (200 per study arm). Intervention: complex intervention based on the implementation of the Ariadne principles with two components: (1) FP training and (2) FP-patient interview. Outcomes: MAI score, health services use, quality of life (Euroqol 5D-5L), pharmacotherapy and adherence to treatment (Morisky-Green, Haynes-Sackett), and clinical and socio-demographic variables. Statistical analysis: primary outcome is the difference in MAI score between T0 and T1 and corresponding 95% confidence interval. Adjustment for confounding factors will be performed by multilevel analysis. All analyses will be carried out in accordance with the intention-to-treat principle. Discussion: It is essential to provide evidence concerning interventions on PC patients with polypharmacy and multimorbidity, conducted in the context of routine clinical practice, and involving young-old patients with significant potential for preventing negative health outcomes. Trial registration: Clinicaltrials.gov, NCT02866799Publisher PDFPeer reviewe

    Use of anticoagulants and antiplatelet agents in stable outpatients with coronary artery disease and atrial fibrillation. International CLARIFY registry

    Get PDF
    corecore