46 research outputs found

    Aerosol number fluxes and concentrations over a southern European urban area

    Get PDF
    This work was supported by the Spanish Ministry of Economy and Competitiveness through projects PID2020-120015RB-100, CGL201681092-R, and CGL2017-90884-REDT, by the Andalusia Regional Government through project P18-RT-3820 and P20-00136, by the European Union's Horizon 2020 research and innovation program through project ACTRIS-2 (grant agreement No 654109). This research was partially supported by Project RTI2018.101154.A.I00 funded by MCIN/AEI/10.13039/501100011033/FEDER "Una manera de hacer Europa". The authors thank the Parque de la Ciencias for making this research possible. Juan Andr ' es Casquero-Vera is supported by BES-2017-080015 funded by MCIN/AEI/10.13039/501100011033 and FSE "El FSE invierte en tu futuro". Funding for open access charge: Universidad de Granada/CBUA.Although cities are an important source of aerosol particles, aerosol number flux measurements over urban areas are scarce. These measurements are however important as they can allow us to identify the different sources/sinks of aerosol particles and quantify their emission contributions. Therefore, they can help us to understand the aerosol impacts on human health and climate, and to design effective mitigation strategies through the reduction of urban aerosol emissions. In this work we analyze the aerosol number concentrations and fluxes for particles with diameters larger than 2.5 nm measured by eddy covariance technique at an urban area (Granada city, Spain) from November 2016 to April 2018. This is the first study of particle number flux in an urban area in the Iberian Peninsula and is one of the few current studies that report long-term aerosol number flux measurements. The results suggest that, on average, Granada urban area acted as a net source for atmospheric aerosol particles with median particle number flux of 150 x 10(6) m(-2) s(-1). Downward negative fluxes were observed in only 12% of the analyzed data, and most of them were observed during high aerosol load conditions. Both aerosol number fluxes and concentrations were maximum in winter and 50% larger than those measured in summer due to the increased emissions from domestic heating, burning of residual agricultural waste in the agricultural area surrounding the site, as well as to the lower aerosol dilution effects during winter. The analysis of the seasonal diurnal variability of the aerosol number concentration revealed the significant impact of traffic emissions on aerosol population over Granada urban area in all seasons. It also shows the impact of domestic heating and agricultural waste burning emissions in winter as well as the influence of new particle formation processes in summer and spring seasons. Closer analysis by wind sector demonstrated that both aerosol concentrations and fluxes from urban sector (where high density of anthropogenic sources is located) were lower than those from rural sector (which includes agricultural area but also the main highway of the city). This evidences the strong impact of aerosol emissions from traffic circulating on the highway on aerosol population over our measurement site.Spanish Government PID2020-120015RB-100 CGL201681092-R CGL2017-90884-REDTAndalusia Regional Government P18-RT-3820 P20-00136European Commission 654109MCIN/AEI/FEDER "Una manera de hacer Europa" RTI2018.101154.A.I00FSE "El FSE invierte en tu futuro"Universidad de Granada/CBUA MCIN/AEI BES-2017-08001

    Evaluation of LIRIC Algorithm Performance Using Independent Sun-Sky Photometer Data at Two Altitude Levels

    Get PDF
    The authors thank the FEDER program for the instrumentation used in this work and the University of Granada for supporting this study through the Excellence Units Program “Plan Propio. Programa23 Convocatoria 2017”. CIMEL Calibration was performed at the AERONET-EUROPE calibration center, supported by ACTRIS. We also express our gratitude to the developers of the LIRIC algorithm and software. The authors thank Sierra Nevada National Park for support in the maintenance of the Sun-sky photometer station at Cerro Poyos. Maria J. Granados-Muñoz is funded by a Maria Sklodowska-Curie IF under grant agreement no. 796539. Juan Antonio Bravo-Aranda and Antonio Valenzuela received funding from the Marie Sklodowska-Curie Action Cofund 2016 EU project Athenea3i under grant agreement no. 754446. Jose Antonio Benavent-Oltra is funded by the University of Granada through “Plan Propio. Programa 7, Convocatoria 2019”. This work was also supported by the Ambizione program of the Swiss National Science Foundation (project no. PZ00P2 168114).This work evaluates the Lidar-Radiometer Inversion Code (LIRIC) using sun-sky photometers located at different altitudes in the same atmospheric column. Measurements were acquired during an intensive observational period in summer 2012 at Aerosols, Clouds, and Trace gases Research InfraStructure Network (ACTRIS)/Aerosol Robotic Network (AERONET) Granada (GRA; 37.16◦N, 3.61◦W, 680 m above sea level (a.s.l.)) and Cerro Poyos (CP; 37.11◦N, 3.49◦W, 1820 m a.s.l.) sites. Both stations operated AERONET sun-photometry, with an additional lidar system operating at Granada station. The extended database of simultaneous lidar and sun-photometry measurements from this study allowed the statistical analysis of vertically resolved microphysical properties retrieved with LIRIC, with 70% of the analyzed cases corresponding to mineral dust. Consequently, volume concentration values were 46 µm3 /cm3 on average, with a value of ~30 µm3 /cm3 corresponding to the coarse spheroid mode and concentrations below 10 µm3 /cm3 for the fine and coarse spherical modes. According to the microphysical properties’ profiles, aerosol particles reached altitudes up to 6000 m a.s.l., as observed in previous studies over the same region. Results obtained from comparing the LIRIC retrievals from GRA and from CP revealed good agreement between both stations with differences within the expected uncertainties associated with LIRIC (15%). However, larger discrepancies were found for 10% of the cases, mostly due to the incomplete overlap of the lidar signal and/or to the influence of different aerosol layers advected from the local origin located between both stations, which is particularly important in cases of low aerosol loads. Nevertheless, the results presented here demonstrate the robustness and self-consistency of LIRIC and consequently its applicability to large databases such as those derived from ACTRIS-European Aerosol Research Lidar Network (EARLINET) observations.This work was supported by the Spanish Ministry of Economy and Competitiveness through projects CGL2016-81092-R, and CGL2017-83538-C3-1-R; the Excellence network CGL2017-90884-REDT; by the European Union’s Horizon 2020 research and innovation program through ACTRIS project (grant agreement n. 654169)

    Dynamics of the Atmospheric Boundary Layer over two middle-latitude rural sites with Doppler lidar

    Get PDF
    The Atmospheric Boundary Layer (ABL) over two middle-latitude rural sites was characterized in terms of mean horizontal wind and turbulence sources using a standard classification methodology based on Doppler lidar. The first location was an irrigated olive orchard in Ăšbeda (Southern Spain), representing one of the most important crops in the Mediterranean basin and a typical site with Mediterranean climate. The second location was PolWET peatland site in Rzecin (Northwestern Poland), representing one of the largest natural terrestrial carbon storages that have a strong interaction with the climate system. The results showed typical situations for non cloud-topped ABL cases, where ABL is fully developed during daytime due to convection, with high turbulent activity and strong positive skewness indicating frequent and powerful updrafts. The cloud-topped cases showed the strong influence that clouds can have on ABL development, preventing it to reach the same maximum height and introducing top-down movements as an important contribution to mixing. The statistical analysis of turbulent sources allowed for finding a common diurnal cycle for convective mixing at both sites, but nocturnal wind shear driven turbulence with marked differences in its vertical distribution. This analysis demonstrates the Doppler lidar measurements and the classification algorithm strong potential to characterize the dynamics of ABL in its full extent and with high temporal resolution. Moreover, some recommendations for future improvement of the classification algorithm were provided on the basis of the experience gained.Fundacion Ramon ArecesEuropean Space Agency 4000119961/16/NL/FF/mgPolish National Science Centre (NCN) 2021/40/C/ST10/00023Spanish Government CGL2015-73250-JIN CGL201681092-R CGL2017-83538-C3-1-R CGL2017-90884-REDT PID2020117825GB-C21 PID2020-120015RB-100Andalusian Regional Government P18-RT-3820FEDER-UGR program ARNM-430-UGR20University of GranadaACTRIS-2 Research Infrastructure Project of the European Union's Horizon 2020 research and innovation program 654109European Cooperation in Science and Technology (COST) CA18235Universidad de Granada/CBU

    Comparative assessment of GRASP algorithm for a dust event over Granada (Spain) during ChArMEx-ADRIMED 2013 campaign

    Get PDF
    This work was supported by the Andalusia Regional Government through project P12-RNM-2409, by the Spanish Ministry of Economy and Competitiveness through project CGL2013-45410-R and CGL2016-81092-R and through grant FPI (BES-2014-068893), by the “Juan de la Cierva-Formación” program (FJCI-2014-22052) and the Marie Skłodowska-Curie Individual Fellowships (IF) ACE_GFAT (grant agreement no. 659398), and by the University of Granada through “Plan Propio. Programa 9 Convocatoria 2013”. The financial support for EARLINET in the ACTRIS Research Infrastructure Project by the European Union’s Horizon 2020 research and innovation programme through project ACTRIS-2 (grant agreement no. 654109). The authors thankfully acknowledge the FEDER program for the instrumentation used in this work and the Sierra Nevada National Park, for its support for the operation of Cerro Poyos station. This work is part of the ChArMEx project supported by ADEME, CEA, CNRS-INSU and Météo- France through the multidisciplinary programme MISTRALS (Mediterranean Integrated STudies at Regional And Local Scales). We thank the instrument scientists, pilots and ground crew of SAFIRE for facilitating the instrument integration and conducting flight operations. Finally, the authors would like to acknowledge the use of GRASP inversion algorithm software (http://www.grasp-open.com) in this work.In this study, vertical profiles and column-integrated aerosol properties retrieved by the GRASP (Generalized Retrieval of Atmosphere and Surface Properties) algorithm are evaluated with in situ airborne measurements made during the ChArMEx-ADRIMED field campaign in summer 2013. In the framework of this campaign, two different flights took place over Granada (Spain) during a desert dust episode on 16 and 17 June. The GRASP algorithm, which combines lidar and sun–sky photometer data measured at Granada, was used to retrieve aerosol properties. Two sun-photometer datasets are used: one co-located with the lidar system and the other in the Cerro Poyos station, approximately 1200 m higher than the lidar system but at a short horizontal distance. Column-integrated aerosol microphysical properties retrieved by GRASP are compared with AERONET products showing a good agreement. Differences between GRASP retrievals and airborne extinction profiles are in the range of 15 to 30 %, depending on the instrument on board the aircraft used as reference. On 16 June, a case where the dust layer was coupled to the aerosol layer close to surface, the total volume concentration differences between in situ data and GRASP retrieval are 15 and 36 % for Granada and Cerro Poyos retrievals, respectively. In contrast, on 17 June the dust layer was decoupled from the aerosol layer close to the surface, and the differences are around 17 % for both retrievals. In general, all the discrepancies found are within the uncertainly limits, showing the robustness and reliability of the GRASP algorithm. However, the better agreement found for the Cerro Poyos retrieval with the aircraft data and the vertical homogeneity of certain properties retrieved with GRASP, such as the scattering Ångström exponent, for cases with aerosol layers characterized by different aerosol types, shows that uncertainties in the vertical distribution of the aerosol properties have to be considered. The comparison presented here between GRASP and other algorithms (i.e. AERONET and LIRIC) and with airborne in situ measurements shows the potential to retrieve the optical and microphysical profiles of the atmospheric aerosol properties. Also, the advantage of GRASP versus LIRIC is that GRASP does not assume the results of the AERONET inversion as a starting point

    Study of the planetary boundary layer by microwave radiometer, elastic lidar and Doppler lidar estimations in Southern Iberian Peninsula

    Get PDF
    The Planetary Boundary Layer (PBL) is a relevant part of the atmosphere with a variable extension that clearly plays an important role in fields like air quality or weather forecasting. Passive and active remote sensing systems have been widely applied to analyze PBL characteristics. The combination of different remote sensing techniques allows obtaining a complete picture on the PBL dynamic. In this study, we analyze the PBL using microwave radiometer, elastic lidar and Doppler lidar data. We use co-located data simultaneously gathered in the framework of SLOPE-I (Sierra Nevada Lidar aerOsol Profiling Experiment) campaign at Granada (Spain) during a 90- day period in summer 2016. Firstly, the PBL height (PBLH) obtained from microwave radiometer data is validated against PBLH provided by analyzing co-located radiosondes, showing a good agreement. In a second stage, active remote sensing systems are used for deriving the PBLH. Thus, an extended Kalman filter method is applied to data obtained by the elastic lidar while the vertical wind speed variance method is applied to the Doppler lidar. PBLH's derived by these approaches are compared to PBLH retrieved by the microwave radiometer. The results show a good agreement among these retrievals based on active remote sensing in most of the cases, although some discrepancies appear in instances of intense PBL changes (either growth and/or decrease)

    Implementation of UV rotational Raman channel to improve aerosol retrievals from multiwavelength lidar

    Get PDF
    Vibrational Raman effect is widely used in atmospheric lidar systems, but rotational Raman present several advantages. We have implemented a new setup in the ultraviolet branch of an existing multiwavelength lidar system to collect signal from rotational Raman lines of Oxygen and Nitrogen. We showed that, with an appropriate filter wavelength selection, the systematic error introduced in the particle optical properties due to temperature dependence was less than 4%. With this new setup, we have been able to retrieve aerosol extinction and backscatter coefficients profiles at 355 nm with 1-h time resolution during daytime and up to 1-min time resolution during nighttime.Grupo de FĂ­sica de la AtmĂłsfera (RNM119

    Adiciones y correcciones a la orquidoflora valenciana, VI

    Get PDF
    Se aportan datos sobre algunos táxones poco abundantes en la Comunidad Valenciana; a destacar la presencia de Barlia robertiana en Monòver, Himantoglossum hircinum en Bocairent, Orchis fragrans en el Parc Natural de la Serra de Mariola y Orchis italica en Castellonet de la Conquesta.It is shown some data about rare taxa at the Valencian Community, specially about Barlia robertiana in Monòver, Himantoglossum hircinum in Bocairent, Orchis fragrans in the Natural Park Serra de Mariola and Orchis italica in Castellonet de la Conquesta

    Seasonal analysis of the atmosphere during five years by using microwave radiometry over a mid-latitude site

    Get PDF
    This work focuses on the analysis of the seasonal cycle of temperature and relative humidity (RH) profiles and integrated water vapor (IWV) obtained from microwave radiometer (MWR) measurements over the mid-latitude city of Granada, southern Spain. For completeness the study, the maximum atmospheric boundary layer height (ABLHmax) is also included. To this end, we have firstly characterized the HATPRO-RPG MWR errors using 55 co-located radiosondes (RS) by means of the mean-bias (biasbar) profile and the standard deviation (SDbias) profile classified under all-weather conditions and cloud-free conditions. This characterization pointed out that temperature from HATPRO-MWR presents a very low biasbar respects RS mostly below 2.0 km agl, ranging from positive to negative values under all-weather conditions (from 1.7 to -0.4 K with SDbias up to 3.0 K). Under cloud-free conditions, the bias was very similar to that found under all-weather conditions (1.8 to -0.4 K) but with smaller SDbias (up to 1.1 K). The same behavior is also seen in this lower part (ground to 2.0 km agl) for RH. Under all-weather conditions, the mean RH bias ranged from 3.0 to -4.0% with SDbias between 10 and 16.3% while under cloud-free conditions the bias ranged from 2.0 to -0.4% with SDbias from 0.5 to 13.3%. Above 2.0 km agl, the SDbias error increases considerably up to 4 km agl (up to -20%), and then decreases slightly above 7.0 km agl (up to -5%). In addition, IWV values from MWR were also compared with the values obtained from the integration of RS profiles, showing a better linear fit under cloud-free conditions (R2 = 0.96) than under all-weather conditions (R2 = 0.82). The mean bias under cloud-free conditions was -0.80 kg/m2 while for all-weather conditions it was -1.25 kg/m2. Thus, the SDbiasfor all the statistics (temperature, RH and IWV) of the comparison between MWR and RS presented higher values for all-weather conditions than for cloud-free conditions ones. It points out that the presence of clouds is a key factor to take into account when MWR products are used. The second part of this work is devoted to a seasonal variability analysis over five years, leading us to characterize thermodynamically the troposphere over our site. This city atmosphere presents a clear seasonal cycle where temperature, ABLHmax and IWV increase from winter to summer and decrease in autumn, meanwhile RH decreases along the warmer seasons. This city presents cold winters (mean daily maximum temperature: 10.6 ± 1.1 °C) and dry/hot summers (mean daily maximum temperature of 28.8 ± 0.9 °C and mean daily maximum of surface RH up to 55.0 ± 6.0%) at surface (680 m asl). Moreover, considering temporal trends, our study pointed out that only temperature and RH showed a linear increase in winters with a mean-rate of (0.5 ± 0.1) °C/year and (3.4 ± 1.7) %/year, respectively, from ground to 2.0 km agl, meanwhile IWV presented a linear increase of 1.0 kg·m-2/year in winters, 0.78 kg·m-2/year in summers and a linear decrease in autumns of -0.75 kg·m-2/year.Andalusia Regional Government through project P12-RNM-2409Spanish Ministry of Economy and Competitiveness through projects CGL2013-45410-R, CGL2015-73250-JIN and CGL2016-81092-RJuan de la Cierva grant IJCI-2016-3000

    Extinction-related Angström exponent characterization of submicrometric volume fraction in atmospheric aerosol particles

    Get PDF
    The AEAOD– ΔAEAOD grid proposed by Gobbi et al. (2007) is a graphical method used to visually represent the spectral characterization of aerosol optical depth (AOD), i.e. Angström exponent (AE) and its curvature, in order to infer the fine mode contribution (η) to the total AOD and the size of the fine mode aerosol particles. Perrone et al. (2014) applied this method for the wavelengths widely used in lidar measurements. However, in neither case does the method allow for a direct relationship between η and the fine mode fraction contribution to the total aerosol population. Some discussions are made regarding the effect of shape and composition to the classical AE-ΔAE plot. The potential use of particle backscatter measurements, widely used in aerosol characterization methods together with extinction measurements, is also discussed in the AE-ΔAE grid context. A modification is proposed that yields the submicron contribution to the total volume concentration by using particle extinction data, and a comparison to experimental measurements is made. Our results indicate that the use of a modified AE-ΔAE grid plot to directly obtain submicrometric and micrometric mode fraction to the total aerosol population is feasible if a volume-based bimodal particle size distribution is used instead of a number-based one.Andalusia Regional Government through project P12-RNM-2409Spanish Ministry of Sciences, Innovation and Universities (CGL2016-81092 and CGL2017 -90884 - REDT

    Retrieval of aerosol profiles combining sunphotometer and ceilometer measurements in GRASP code

    Get PDF
    This is a preprint version of article accepted "Roman, A.; et al. Retrieval of aerosol profiles combining sunphotometer and ceilometer measurements in GRASP code. Atmospheric Research, 204: 161-177 (2018). DOI: https://doi.org/10.1016./j.atmosres.2018.01.021".In this paper we present an approach for the profiling of aerosol microphysical and optical properties combining ceilometer and sun/sky photometer measurements in the GRASP code (General Retrieval of Aerosol and Surface Properties). For this objective, GRASP is used with sun/sky photometer measurements of aerosol optical depth (AOD) and sky radiances, both at four wavelengths and obtained from AErosol RObotic NETwork (AERONET), and ceilometer measurements of range corrected signal (RCS) at 1064 nm. A sensitivity study with synthetic data evidences the capability of the method to retrieve aerosol properties such as size distribution and profiles of volume concentration (VC), especially for coarse particles. Aerosol properties obtained by the mentioned method are compared with airborne in-situ measurements acquired during two flights over Granada (Spain) within the framework of ChArMEx/ADRIMED (Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) 2013 campaign. The retrieved aerosol VC profiles agree well with the airborne measurements, showing a mean bias error (MBE) and a mean absolute bias error (MABE) of 0.3 µm3/cm3 (12%) and 5.8 µm3/cm3 (25%), respectively. The differences between retrieved VC and airborne in-situ measurements are within the uncertainty of GRASP retrievals. In addition, the retrieved VC at 2500 m a.s.l. is shown and compared with in-situ measurements obtained during summer 2016 at a high-atitude mountain station in the framework of the SLOPE I campaign (Sierra Nevada Lidar AerOsol Profiling Experiment). VC from GRASP presents high correlation (r=0.91) with the in-situ measurements, but overestimates them, MBE and MABE being equal to 23% and 43%.This work was supported by the Andalusia Regional Government (project P12-RNM-2409) and by the “Consejería de Educación” of “Junta de Castilla y León” (project VA100U14); the Spanish Ministry of Economy and Competitiveness under the projects, CMT2015-66742-R, CGL2016-81092-R and “Juan de la Cierva-Formación” program (FJCI-2014-22052); and the European Union's Horizon 2020 research and innovation programme through project ACTRIS-2 (grant agreement no 654109) and the Marie Curie Rise action GRASP-ACE (grant agreement no 778349). The authors thankfully acknowledge the FEDER program for the instrumentation used in this work. COST Action TOPROF (ES1303), supported by COST (European Cooperation in Science and Technology), is also acknowledged
    corecore