908 research outputs found
The use of cosmic muons in detecting heterogeneities in large volumes
The muon intensity attenuation method to detect heterogeneities in large
matter volumes is analyzed. Approximate analytical expressions to estimate the
collection time and the signal to noise ratio, are proposed and validated by
Monte Carlo simulations. Important parameters, including point spread function
and coordinate reconstruction uncertainty are also estimated using Monte Carlo
simulations.Comment: 8 pages, 11 figures, submetted to NIM
Study of the Very High Energy Emission of M87 through its Broadband Spectral Energy Distribution
The radio galaxy M87 is the central dominant galaxy of the Virgo Cluster. Very high-energy (VHE, âł0.1 TeV) emission from M87 has been detected by imaging air Cherenkov telescopes. Recently, marginal evidence for VHE long-term emission has also been observed by the High Altitude Water Cherenkov Observatory, a gamma-ray and cosmic-ray detector array located in Puebla, Mexico. The mechanism that produces VHE emission in M87 remains unclear. This emission originates in its prominent jet, which has been spatially resolved from radio to X-rays. In this paper, we construct a spectral energy distribution from radio to gamma rays that is representative of the nonflaring activity of the source, and in order to explain the observed emission, we fit it with a lepto-hadronic emission model. We found that this model is able to explain nonflaring VHE emission of M87 as well as an orphan flare reported in 2005
HAWC Study of the Very-high-energy Îł-Ray Spectrum of HAWC J1844â034
Recently, the region surrounding eHWC J1842â035 has been studied extensively by Îł-ray observatories due to its extended emission reaching up to a few hundred TeV and potential as a hadronic accelerator. In this work, we use 1910 days of cumulative data from the High Altitude Water Cherenkov (HAWC) observatory to carry out a dedicated systematic source search of the eHWC J1842â035 region. During the search, we found three sources in the region, namely, HAWC J1844â034, HAWC J1843â032, and HAWC J1846â025. We have identified HAWC J1844â034 as the extended source that emits photons with energies up to 175 TeV. We compute the spectrum for HAWC J1844â034, and by comparing with the observational results from other experiments, we have identified HESS J1843â033, LHAASO J1843â0338, and TASG J1844â038 as very-high-energy Îł-ray sources with a matching origin. Also, we present and use the multiwavelength data to fit the hadronic and leptonic particle spectra. We have identified four pulsar candidates in the nearby region in which PSR J1844â0346 is found to be the most likely candidate due to its proximity to HAWC J1844â034 and the computed energy budget. We have also found SNR G28.6â0.1 as a potential counterpart source of HAWC J1844â034 for which both leptonic and hadronic scenarios are feasible
Observation of the Crab Nebula with the HAWC Gamma-Ray Observatory
The Crab Nebula is the brightest TeV gamma-ray source in the sky and has been
used for the past 25 years as a reference source in TeV astronomy, for
calibration and verification of new TeV instruments. The High Altitude Water
Cherenkov Observatory (HAWC), completed in early 2015, has been used to observe
the Crab Nebula at high significance across nearly the full spectrum of
energies to which HAWC is sensitive. HAWC is unique for its wide field-of-view,
nearly 2 sr at any instant, and its high-energy reach, up to 100 TeV. HAWC's
sensitivity improves with the gamma-ray energy. Above 1 TeV the
sensitivity is driven by the best background rejection and angular resolution
ever achieved for a wide-field ground array.
We present a time-integrated analysis of the Crab using 507 live days of HAWC
data from 2014 November to 2016 June. The spectrum of the Crab is fit to a
function of the form . The data is well-fit with values of
, , and
log when
is fixed at 7 TeV and the fit applies between 1 and 37 TeV. Study of the
systematic errors in this HAWC measurement is discussed and estimated to be
50\% in the photon flux between 1 and 37 TeV.
Confirmation of the Crab flux serves to establish the HAWC instrument's
sensitivity for surveys of the sky. The HAWC survey will exceed sensitivity of
current-generation observatories and open a new view of 2/3 of the sky above 10
TeV.Comment: Submitted 2017/01/06 to the Astrophysical Journa
Daily monitoring of TeV gamma-ray emission from Mrk 421, Mrk 501, and the Crab Nebula with HAWC
We present results from daily monitoring of gamma rays in the energy range
to TeV with the first 17 months of data from the High
Altitude Water Cherenkov (HAWC) Observatory. Its wide field of view of 2
steradians and duty cycle of % are unique features compared to other TeV
observatories that allow us to observe every source that transits over HAWC for
up to hours each sidereal day. This regular sampling yields
unprecedented light curves from unbiased measurements that are independent of
seasons or weather conditions. For the Crab Nebula as a reference source we
find no variability in the TeV band. Our main focus is the study of the TeV
blazars Markarian (Mrk) 421 and Mrk 501. A spectral fit for Mrk 421 yields a
power law index and
an exponential cut-off
TeV. For Mrk 501, we find an index and exponential cut-off TeV. The light curves for both sources show clear
variability and a Bayesian analysis is applied to identify changes between flux
states. The highest per-transit fluxes observed from Mrk 421 exceed the Crab
Nebula flux by a factor of approximately five. For Mrk 501, several transits
show fluxes in excess of three times the Crab Nebula flux. In a comparison to
lower energy gamma-ray and X-ray monitoring data with comparable sampling we
cannot identify clear counterparts for the most significant flaring features
observed by HAWC.Comment: 18 pages, 10 figures, accepted for publication in The Astrophysical
Journa
- âŠ