41 research outputs found
Recommended from our members
miRNA contributions to pediatric-onset multiple sclerosis inferred from GWAS.
ObjectiveOnset of multiple sclerosis (MS) occurs in childhood for approximately 5% of cases (pediatric MS, or ped-MS). Epigenetic influences are strongly implicated in MS pathogenesis in adults, including the contribution from microRNAs (miRNAs), small noncoding RNAs that affect gene expression by binding target gene mRNAs. Few studies have specifically examined miRNAs in ped-MS, but individuals developing MS at an early age may carry a relatively high burden of genetic risk factors, and miRNA dysregulation may therefore play a larger role in the development of ped-MS than in adult-onset MS. This study aimed to look for evidence of miRNA involvement in ped-MS pathogenesis.MethodsGWAS results from 486 ped-MS cases and 1362 controls from the U.S. Pediatric MS Network and Kaiser Permanente Northern California membership were investigated for miRNA-specific signals. First, enrichment of miRNA-target gene network signals was evaluated using MIGWAS software. Second, SNPs in miRNA genes and in target gene binding sites (miR-SNPs) were tested for association with ped-MS, and pathway analysis was performed on associated target genes.ResultsMIGWAS analysis showed that miRNA-target gene signals were enriched in GWAS (P = 0.038) and identified 39 candidate biomarker miRNA-target gene pairs, including immune and neuronal signaling genes. The miR-SNP analysis implicated dysregulation of miRNA binding to target genes in five pathways, mainly involved in immune signaling.InterpretationEvidence from GWAS suggests that miRNAs play a role in ped-MS pathogenesis by affecting immune signaling and other pathways. Candidate biomarker miRNA-target gene pairs should be further studied for diagnostic, prognostic, and/or therapeutic utility
Recommended from our members
The multiple sclerosis risk allele within the AHI1 gene is associated with relapses in children and adults
BackgroundWhile common variant non-HLA (human leukocyte antigen) alleles have been associated with MS risk, their role in disease course is less clear. We sought to determine whether established multiple sclerosis (MS) genetic susceptibility factors are associated with relapse rate in children and an independent cohort of adults with MS.MethodsGenotyping was performed for 182 children with MS or clinically isolated syndrome with high risk for MS from two Pediatric MS Centers. They were prospectively followed for relapses. Fifty-two non-HLA MS susceptibility single nucleotide polymorphisms (SNPs) were evaluated for association with relapse rate. Cox regression models were adjusted for sex, genetic ancestry, disease-modifying therapy (DMT), 25-OH vitamin D level and HLA-DRB1*15:01/03 status. Investigation of pediatric subject SNP results was performed using a second cohort of 141 adult MS subjects of Northern European ancestry from the Southern Tasmanian Multiple Sclerosis Longitudinal Study.ResultsFor pediatric subjects, 408 relapses were captured over 622 patient-years of follow-up. Four non-HLA risk SNPs (rs11154801, rs650258, rs12212193, rs2303759) were associated with relapses (p < 0.01) in the pediatric subjects. After adjustment for genetic ancestry, sex, age, vitamin D level, DMT use and HLA-DRB1*15 status, having two copies of the MS risk allele within AHI1 (rs11154801) was associated with increased relapses among children (HR = 1.75,95%CI = 1.18-2.48, p = 0.006) and this result was also observed among adults (HR = 1.81,95%CI = 1.05-3.03, p = 0.026).ConclusionsOur results suggest that the MS genetic risk variant within the gene AHI1 may contribute to disease course in addition to disease susceptibility
Antibody response to common viruses and human leukocyte antigen-DRB1 in pediatric multiple sclerosis
BackgroundAs remote infections with common herpes viruses are associated with modulation of the risk of multiple sclerosis (MS), we hypothesized that antibody concentrations against these viruses may further modify risk. As many common viruses are first encountered during childhood, pediatric MS offer a unique opportunity to investigate more closely their influence on susceptibility. Our aim was to determine if MS patients who were positive for these viruses had higher levels of antibodies to these viruses. We also assessed whether human leukocyte antigen (HLA)-DRB1*1501 genotype influenced viral antibody levels.MethodsAntibody response levels toward Epstein Barr virus (EBV), cytomegalovirus (CMV), and herpes simplex virus (HSV)-1, and HLA-DRB1*1501 status were determined in pediatric MS patients (n=189) and controls (n=38). Multivariate analyses were used, adjusted for age, gender, race, ethnicity and use of disease-modifying therapies.ResultsThe antibody concentrations against EBV (Epstein-Barr nuclear antigen 1 (EBNA-1), viral capsid antigen (VCA) and early antigen (EA)), CMV and HSV-1 were similar between pediatric MS patients and controls positive for seroconversion against the virus of interest. EBNA-1 humoral responses were higher in HLA-DRB1 positive individuals (p=0.005) whereas other viral humoral responses were similar in HLA-DRB1 positive and negative individuals.ConclusionAmong those positive for EBNA-1, MS patients did not have higher levels of antibody response to EBNA-1: however, titers for EBNA-1 were higher in those who were HLA-DRB1 positive. This suggests that genotype might influence the humoral response to EBV. Whether other genotypes influence antibody response to other viruses remains to be determined