1,312 research outputs found
Spatial Misalignment in time series studies of air pollution and health data
Time series studies of environmental exposures often involve comparing daily changes in a toxicant measured at a point in space with daily changes in an aggregate measure of health. Spatial misalignment of the exposure and response variables can bias the estimation of health risk and the magnitude of this bias depends on the spatial variation of the exposure of interest. In air pollution epidemiology, there is an increasing focus on estimating the health effects of the chemical components of particulate matter. One issue that is raised by this new focus is the spatial misalignment error introduced by the lack of spatial homogeneity in many of the particulate matter components. Current approaches to estimating short-term health risks via time series modeling do not take into account the spatial properties of the chemical components and therefore could result in biased estimation of those risks. We present a spatial-temporal statistical model for quantifying spatial misalignment error and show how adjusted heath risk estimates can be obtained using a regression calibration approach and a two-stage Bayesian model. We apply our methods to a database containing information on hospital admissions, air pollution, and weather for 20 large urban counties in the United States
Recommended from our members
The Use of a Quasi-Experimental Study on the Mortality Effect of a Heat Wave Warning System in Korea.
Many cities and countries have implemented heat wave warning systems to combat the health effects of extreme heat. Little is known about whether these systems actually reduce heat-related morbidity and mortality. We examined the effectiveness of heat wave alerts and health plans in reducing the mortality risk of heat waves in Korea by utilizing the discrepancy between the alerts and the monitored temperature. A difference-in-differences analysis combined with propensity score weighting was used. Mortality, weather monitoring, and heat wave alert announcement data were collected for 7 major cities during 2009-2014. Results showed evidence of risk reduction among people aged 19-64 without education (-0.144 deaths/1,000,000 people, 95% CI: -0.227, -0.061) and children aged 0-19 (-0.555 deaths/1,000,000 people, 95% CI: -0.993, -0.117). Decreased cardiovascular and respiratory mortality was found in several subgroups including single persons, widowed people, blue-collar workers, people with no education or the highest level of education (university or higher). No evidence was found for decreased all-cause mortality in the population (1.687 deaths/1,000,000 people per day; 95% CI: 1.118, 2.255). In conclusion, heat wave alerts may reduce mortality for several causes and subpopulations of age and socio-economic status. Further work needs to examine the pathways through which the alerts impact subpopulations differently
Ozone and Mortality: A Meta-Analysis of Time-Series Studies and Comparison to a Multi-City Study (The National Morbidity, Mortality, and Air Pollution Study)
While many time-series studies of ozone and daily mortality identified positive associations,others yielded null or inconclusive results. We performed a meta-analysis of 144 effect estimates from 39 time-series studies, and estimated pooled effects by lags, age groups,cause-specific mortality, and concentration metrics. We compared results to estimates from the National Morbidity, Mortality, and Air Pollution Study (NMMAPS), a time-series study of 95 large U.S. cities from 1987 to 2000. Both meta-analysis and NMMAPS results provided strong evidence of a short-term association between ozone and mortality, with larger effects for cardiovascular and respiratory mortality, the elderly, and current day ozone exposure as compared to other single day lags. In both analyses, results were not sensitive to adjustment for particulate matter and model specifications. In the meta-analysis we found that a 10 ppb increase in daily ozone is associated with a 0.83 (95% confidence interval: 0.53, 1.12%) increase in total mortality, whereas the corresponding NMMAPS estimate is 0.25%(0.12, 0.39%). Meta-analysis results were consistently larger than those from NMMAPS,indicating publication bias. Additional publication bias is evident regarding the choice of lags in time-series studies, and the larger heterogeneity in posterior city-specific estimates in the meta-analysis, as compared with NMAMPS
Time-Series Studies of Particulate Matter
Studies of air pollution and human health have evolved from descriptive studies of the early phenomena of large increases in adverse health effects following extreme air pollution episodes, to time-series analyses and the development of sophisticated regression models. In fact, advanced statistical methods are necessary to address the many challenges inherent in the detection of a small pollution risk in the presence of many confounders. This paper reviews the history, methods, and findings of the time-series studies estimating health risks associated with short-term exposure to particulate matter, though much of the discussion is applicable to epidemiological studies of air pollution in general. We review the critical role of epidemiological studies in setting regulatory standards and the history of PM epidemiology and time-series analysis. We also summarize recent time-series results and conclude with a discussion of current and future directions of time-series analysis of particulates, including research on mortality displacement and the resolution of results from cohort and time-series studies
A study on modeling nitrogen dioxide concentrations using land-use regression and conventionally used exposure assessment methods
The land-use regression (LUR) approach to estimate the levels of ambient air pollutants is becoming popular due to its high validity in predicting small-area variations. However, only a few studies have been conducted in Asian countries, and much less research has been conducted on comparing the performances and applied estimates of different exposure assessments including LUR. The main objectives of the current study were to conduct nitrogen dioxide (NO2) exposure assessment with four methods including LUR in the Republic of Korea, to compare the model performances, and to estimate the empirical NO2 exposures of a cohort. The study population was defined as the year 2010 participants of a government-supported cohort established for bio-monitoring in Ulsan, Republic of Korea. The annual ambient NO2 exposures of the 969 study participants were estimated with LUR, nearest station, inverse distance weighting, and ordinary kriging. Modeling was based on the annual NO2 average, traffic-related data, land-use data, and altitude of the 13 regularly monitored stations. The final LUR model indicated that area of transportation, distance to residential area, and area of wetland were important predictors of NO2. The LUR model explained 85.8% of the variation observed in the 13 monitoring stations of the year 2009. The LUR model outperformed the others based on leave-one out cross-validation comparing the correlations and root-mean square error. All NO2 estimates ranged from 11.3β18.0 ppb, with that of LUR having the widest range. The NO2 exposure levels of the residents differed by demographics. However, the average was below the national annual guidelines of the Republic of Korea (30 ppb). The LUR models showed high performances in an industrial city in the Republic of Korea, despite the small sample size and limited data. Our findings suggest that the LUR method may be useful in similar settings in Asian countries where the target region is small and availability of data is low
Recommended from our members
Advancing our Understanding of Heat Wave Criteria and Associated Health Impacts to Improve Heat Wave Alerts in Developing Country Settings.
Health effects of heat waves with high baseline temperatures in areas such as India remain a critical research gap. In these regions, extreme temperatures may affect the underlying population's adaptive capacity; heat wave alerts should be optimized to avoid continuous high alert status and enhance constrained resources, especially under a changing climate. Data from registrars and meteorological departments were collected for four communities in Northwestern India. Propensity Score Matching (PSM) was used to obtain the relative risk of mortality and number of attributable deaths (i.e., absolute risk which incorporates the number of heat wave days) under a variety of heat wave definitions (n = 13) incorporating duration and intensity. Heat waves' timing in season was also assessed for potential effect modification. Relative risk of heat waves (risk of mortality comparing heat wave days to matched non-heat wave days) varied by heat wave definition and ranged from 1.28 [95% Confidence Interval: 1.11-1.46] in Churu (utilizing the 95th percentile of temperature for at least two consecutive days) to 1.03 [95% CI: 0.87-1.23] in Idar and Himmatnagar (utilizing the 95th percentile of temperature for at least four consecutive days). The data trended towards a higher risk for heat waves later in the season. Some heat wave definitions displayed similar attributable mortalities despite differences in the number of identified heat wave days. These findings provide opportunities to assess the "efficiency" (or number of days versus potential attributable health impacts) associated with alternative heat wave definitions. Findings on both effect modification and trade-offs between number of days identified as "heat wave" versus health effects provide tools for policy makers to determine the most important criteria for defining thresholds to trigger heat wave alerts
Identification of senescence and death in Emiliania huxleyi and Thalassiosira pseudonana: Cell staining, chlorophyll alterations, and dimethylsulfoniopropionate (DMSP) metabolism
We measured membrane permeability, hydrolytic enzyme, and caspase-like activities using fluorescent cell stains to document changes caused by nutrient exhaustion in the coccolithophore Emiliania huxleyi and the diatom Thalassiosira pseudonana, during batch-culture nutrient limitation. We related these changes to cell death, pigment alteration, and concentrations of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) to assess the transformation of these compounds as cell physiological condition changes. E. huxleyi persisted for 1 month in stationary phase; in contrast, T. pseudonana cells rapidly declined within 10 d of nutrient depletion. T. pseudonana progressively lost membrane integrity and the ability to metabolize 5-chloromethylfluorescein diacetate (CMFDA; hydrolytic activity), whereas E. huxleyi developed two distinct CMFDA populations and retained membrane integrity (SYTOX Green). Caspase-like activity appeared higher in E. huxleyi than in T. pseudonana during the post-growth phase, despite a lack of apparent mortality and cell lysis. Photosynthetic pigment degradation and transformation occurred in both species after growth; chlorophyll a (Chl a) degradation was characterized by an increase in the ratio of methoxy Chl a : Chl a in T. pseudonana but not in E. huxleyi, and the increase in this ratio preceded loss of membrane integrity. Total DMSP declined in T. pseudonana during cell death and DMS increased. In contrast, and in the absence of cell death, total DMSP and DMS increased in E. huxleyi. Our data show a novel chlorophyll alteration product associated with T. pseudonana death, suggesting a promising approach to discriminate nonviable cells in nature
The ExposureβResponse Curve for Ozone and Risk of Mortality and the Adequacy of Current Ozone Regulations
Time-series analyses have shown that ozone is associated with increased risk of premature mortality, but little is known about how O(3) affects health at low concentrations. A critical scientific and policy question is whether a threshold level exists below which O(3) does not adversely affect mortality. We developed and applied several statistical models to data on air pollution, weather, and mortality for 98 U.S. urban communities for the period 1987β2000 to estimate the exposureβresponse curve for tropospheric O(3) and risk of mortality and to evaluate whether a βsafeβ threshold level exists. Methods included a linear approach and subset, threshold, and spline models. All results indicate that any threshold would exist at very low concentrations, far below current U.S. and international regulations and nearing background levels. For example, under a scenario in which the U.S. Environmental Protection Agencyβs 8-hr regulation is met every day in each community, there was still a 0.30% increase in mortality per 10-ppb increase in the average of the same and previous daysβ O(3) levels (95% posterior interval, 0.15β0.45%). Our findings indicate that even low levels of tropospheric O(3) are associated with increased risk of premature mortality. Interventions to further reduce O(3) pollution would benefit public health, even in regions that meet current regulatory standards and guidelines
Recommended from our members
Heat-Related Mortality and Adaptation to Heat in the United States
Background: In a changing climate, increasing temperatures are anticipated to have profound health impacts. These impacts could be mitigated if individuals and communities adapt to changing exposures; however, little is known about the extent to which the population may be adapting. Objective: We investigated the hypothesis that if adaptation is occurring, then heat-related mortality would be decreasing over time. Methods: We used a national database of daily weather, air pollution, and age-stratified mortality rates for 105 U.S. cities (covering 106 million people) during the summers of 1987β2005. Time-varying coefficient regression models and Bayesian hierarchical models were used to estimate city-specific, regional, and national temporal trends in heat-related mortality and to identify factors that might explain variation across cities. Results: On average across cities, the number of deaths (per 1,000 deaths) attributable to each 10Β°F increase in same-day temperature decreased from 51 [95% posterior interval (PI): 42, 61] in 1987 to 19 (95% PI: 12, 27) in 2005. This decline was largest among those β₯ 75 years of age, in northern regions, and in cities with cooler climates. Although central air conditioning (AC) prevalence has increased, we did not find statistically significant evidence of larger temporal declines among cities with larger increases in AC prevalence. Conclusions: The population has become more resilient to heat over time. Yet even with this increased resilience, substantial risks of heat-related mortality remain. Based on 2005 estimates, an increase in average temperatures by 5Β°F (central climate projection) would lead to an additional 1,907 deaths per summer across all cities. Citation: Bobb JF, Peng RD, Bell ML, Dominici F. 2014. Heat-related mortality and adaptation to heat in the United States. Environ Health Perspect 122:811β816; http://dx.doi.org/10.1289/ehp.130739
- β¦