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Abstract 28 

We measured membrane permeability, hydrolytic enzyme, and caspase-like activities 29 

using fluorescent cell stains to document changes caused by nutrient exhaustion in the 30 

coccolithophore Emiliania huxleyi and the diatom Thalassiosira pseudonana, during batch-31 

culture nutrient limitation. We related these changes to cell death, pigment alteration, and 32 

concentrations of dimethylsulphide (DMS) and dimethylsulfoniopropionate (DMSP) to assess 33 

the transformation of these compounds as cell physiological condition changes. E. huxleyi 34 

persisted for 1 month in stationary phase; in contrast, T. pseudonana cells rapidly declined 35 

within 10 days of nutrient depletion. T. pseudonana progressively lost membrane integrity 36 

and the ability to metabolise 5-chloromethylfluorescein diacetate (CMFDA; hydrolytic 37 

activity) whereas E. huxleyi developed two distinct CMFDA populations and retained 38 

membrane integrity (SYTOX green). Caspase-like activity appeared higher in E. huxleyi than 39 

T. pseudonana during the post-growth phase, despite a lack of apparent mortality and cell 40 

lysis. Photosynthetic pigment degradation and transformation occurred in both species after 41 

growth; chlorophyll a (Chl a) degradation was characterised by an increase in the ratio of 42 

methoxy Chl a:Chl a in T. pseudonana but not in E. huxleyi, and the increase in this ratio 43 

preceded loss of membrane integrity. Total DMSP declined in T. pseudonana during cell 44 

death and DMS increased. In contrast, and in the absence of cell death, total DMSP and DMS 45 

increased in E. huxleyi. Our data show a novel chlorophyll alteration product associated with 46 

T. pseudonana death, suggesting a promising approach to discriminate non-viable cells in 47 

nature.48 
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Introduction 49 

Phytoplankton cell physiology is fundamental to global biogeochemical cycles 50 

because the mediation of biogeochemical processes by phytoplankton, such as the production 51 

of the trace gas dimethylsulphide and carbon fixation, strongly depends on cell physiological 52 

state. Non-dividing alternative physiological states include senescence, quiescence 53 

(dormancy) and death (Franklin et al. 2006). Such alternative states are poorly understood, 54 

especially in eukaryotic marine phytoplankton, but are likely to be significant in natural 55 

assemblages. Some progress has been made in recognising cell state in the laboratory: the 56 

morphological changes associated with nutrient limitation in batch cultures have been studied, 57 

and similarities with metazoan programmed cell death (PCD; Bidle and Falkowski 2004; 58 

Franklin et al. 2006) have been described in certain phytoplankton (e.g., Dunaliella 59 

tertiolecta; Segovia and Berges 2009). An improved ability to recognise senescent, quiescent, 60 

moribund and dead cells within microbial populations is important because a substantial 61 

fraction of natural phytoplankton biomass may be non-viable (Veldhuis et al. 2001; Agusti 62 

2004) and yet viability will be a major driver of primary production and biogeochemistry. 63 

Accurate estimation of phytoplankton primary production through remote sensing could be 64 

improved by practical recognition of different physiological states. Although efforts to 65 

understand physiological change in terms of variable pigment content within 66 

photosynthesizing cells via remote sensing (Behrenfeld and Boss 2006) offers a useful way to 67 

assess natural physiological variability, the ability to discriminate ‘viability’ cannot currently 68 

be achieved by remote sensing. In order to achieve this, we need to find robust indicators of 69 

cell death that have value in the field. As part of this effort we undertook a laboratory study 70 

which aimed to provide tools for field assessments of phytoplankton viability. 71 
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Chlorophyll a (Chl a) alteration during senescence is of great interest in organic 72 

geochemistry (Louda et al. 2002; Szymczak-Zyla et al. 2008) and may be useful as a field 73 

signal of phytoplankton cell death. One potential difficulty is that observations of Chl a 74 

alteration have not been explicitly linked with microalgal growth phase or physiological state 75 

(Louda et al. 2002) limiting its usefulness as an indicator of cell death. In general, increased 76 

concentrations of chlorophyll oxidation products have been observed in nutrient-depleted 77 

cells, but it is likely that specific chlorophyll transformation pathways vary between species 78 

(Bale 2010). Initial investigations into pigment alteration and cell viability in natural 79 

phytoplankton assemblages (using SYTOX green staining) have used pigment fluorescence to 80 

assess chlorophyll loss (Veldhuis et al. 2001). Such approaches have been useful, but miss 81 

vital information on the early alteration of chlorophyll. Early alteration mostly gives 82 

structures with indistinguishable absorption and fluorescence properties from the parent 83 

compound and which are, therefore, invisible to fluorescence-based methods. Molecular 84 

structures resulting from early stage alterations can be produced by the reaction of chlorophyll 85 

a with, for example, the reactive oxygen species H2O2 (Walker et al. 2002), and likely occur 86 

in conjunction with cell death because reactive oxygen species are associated with cell death. 87 

High-performance liquid chromatography (HPLC) methods vary in their ability to separate 88 

and detect chlorophyll allomers (Airs et al. 2001) and a suitable method has not yet been 89 

applied to the model species of this study in combination with independent measures of cell 90 

viability. In our study we link an assessment of viability (using flow cytometry) with a high 91 

resolution HPLC method (Airs et al. 2001), in combination with liquid chromatography-mass 92 

spectrometry (LC-MS) characterisation, in order to assess the pigment changes associated 93 

with changing physiological state.  94 
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Dimethyl sulphide (DMS) is the main natural source of reduced sulphur to the 95 

troposphere (Simó 2001). DMS is a volatile trace gas which promotes aerosol formation and 96 

thereby affects global climate (Charlson et al. 1987). The molecular precursor of DMS, the 97 

compatible solute dimethylsulphoniopropionate (DMSP), occurs at high intracellular 98 

concentrations (100–400 mmol L
-1

) in coccolithophores such as E. huxleyi (Keller et al. 99 

1989), and at lower concentrations in diatoms (Keller and Korjeff-Bellows 1996). DMSP can 100 

be released to the seawater dissolved organic carbon pool through grazing, viral lysis, cell 101 

senescence or active exudation, but information on the latter two processes is very limited 102 

(Stefels et al. 2007). Intracellular DMSP concentration increases in some phytoplankton 103 

species when growth is limited due to CO2 or Fe limitation, Ultraviolet light exposure, toxic 104 

levels of cupric ions or addition of hydrogen peroxide (Sunda et al. 2002). On this basis 105 

Sunda et al. (2002) suggested that DMSP and its lysis products DMS and acrylate may form 106 

an antioxidant cascade. This would presumably increase the survival of phytoplankton cells 107 

during conditions associated with oxidative stress and elevated levels of reactive oxygen 108 

species. An alternative hypothesis is that under conditions of unbalanced growth an overflow 109 

mechanism operates whereby excess energy and reduced compounds are used for DMSP 110 

production to ensure the continuation of other metabolic pathways (Stefels 2000). Several 111 

studies have shown that nitrogen limitation leads to increased DMSP concentration (Stefels et 112 

al. 2007). For example, Harada et al. (2009) recently found that intracellular DMSP 113 

concentration increased from 2.1 to 15 mmol L-1 in 60 h when the diatom Thalassiosira 114 

oceanica was grown in low nitrate medium, and this was especially notable when the cells 115 

reached the stationary phase. In addition, Archer et al. (2010) showed that under conditions of 116 

acute photo-oxidative stress Emiliania huxleyi rapidly accumulated DMSP to a level that was 117 

21% above that of control cells. Such processes must require an intact and functioning 118 
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metabolism, and a logical next step is to assess DMSP and DMS production in parallel with 119 

assessments of pigments and cell viability.   120 

Emiliania huxleyi and Thalassiosira pseudonana are good model species for the major 121 

calcifying and silicifying phytoplankton groups and are therefore highly relevant for an 122 

investigation into cell physiology and its relationship with biogeochemical processes. We 123 

grew cells through the batch cycle and used flow cytometry to examine changes in 124 

physiological state using fluorescent cell stains for membrane permeability and enzyme 125 

activity. In conjunction with these cell viability assays we investigated the time course of 126 

pigment alteration using a high resolution HPLC-LC-MS method that allows the separation 127 

and detection of chlorophyll allomers (Airs et al. 2001). In addition, we analysed for DMSP 128 

and DMS to address the knowledge gap on the production of these compounds relative to cell 129 

viability.   130 

Methods 131 

Cell culture and growth measurements Unialgal duplicate cultures of Emiliania 132 

huxleyi (CCMP 1516; calcifying) and Thalassiosira pseudonana (CCMP 1335) were grown 133 

in 500 mL of ESAW/5 media (Enriched Seawater, Artificial Water; Harrison et al. 1980) in 134 

1000 mL borosilicate conical flasks. Silica was omitted in E. huxleyi media. 135 

Photosynthetically active radiation was supplied at 100 µmol photons m
-2

 s
-1

 (Biospherical 136 

Instruments QSL 2101) from cool white fluorescent tubes, on a 14 h:10 h light:dark cycle 137 

(08:00 h – 22:00 h) at a constant temperature of 17°C. Each day at the same time (10:00 h) 138 

biomass was quantified as cell number, cell (or coccosphere in the case of Emiliania huxleyi) 139 

volume (Beckman Coulter MS3), and fluorescence (Heinz-Walz GmbH; PHYTO-PAM 140 

equipped with a PHYTO-ED measuring head). The efficiency of Photosystem II (FV:FM; 30 141 

minute dark-acclimation) was measured at the same time. 142 
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Flow cytometry and cell staining Fluorescent staining analyses were conducted with 143 

three molecular probes. Two of these have been described as ‘live/dead’ stains; SYTOX green 144 

can be used to measure changes in membrane permeability (Veldhuis et al. 1997; ‘dead’ cells) 145 

and CMFDA is cleaved by a variety of enzymes indicating hydrolytic enzymatic activity (D.J. 146 

Franklin and J.A. Berges unpubl. data; Garvey et al. 2007; ‘live’ cells). SYTOX green 147 

(Invitrogen S7020) was applied at a final concentration of 0.5 μmol L
-1

 during a 10 minute, 148 

culture temperature, dark incubation. Uptake of the stain was compared with unstained 149 

controls via flow cytometry (BD FACScalibur). SYTOX green was diluted from the supplied 150 

5 mmol L
-1

 in dimethyl sulphoxide stock solution to 0.1 mmol L
-1

 in Milli-Q water and stored 151 

frozen (-20°C) prior to use. CMFDA (5-chloromethylfluorescein diacetate; Invitrogen C2925) 152 

was added to a final concentration of 10 µmol L
-1

 and incubated for 60 min at culture 153 

temperature and light conditions. CMFDA was diluted to a concentration of 1 mmol L
-1

 in 154 

acetone prior to use (Peperzak and Brussaard 2011) before aliquoting and storage at -20°C. 155 

SYTOX-green and CMFDA final concentration and incubation time were optimised prior to 156 

use using heat-killed cells (80°C, 5 min) and the ‘maximum fluorescence ratio’ approach 157 

(Brussaard et al. 2001). We used an adaptation of the protocol of Bidle and Bender (2008) to 158 

detect caspase-like activity: cells were stained in vivo with a fluorescein isothiocyanate 159 

(FITC) conjugate of carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone to 160 

label cells containing activated caspases (CaspACE; Promega G7462). Caspases are proteases 161 

thought to be specific to programmed cell death (see Discussion). CaspACE was added to 162 

cells at a final concentration of 0.5 µmol L
-1

 and incubated for 30 min at culture temperature 163 

in the dark, before flow cytometric analysis. For all stains working stocks were kept at -20°C 164 

before use. We used Milli-Q water as a sheath fluid, analyses were triggered on red 165 

fluorescence, using ‘lo’ flow (approximately 20 µL min
-1

), and 10,000 events were collected. 166 

We used an event rate between 100 and 400 cells s
–1

 to avoid coincidence and when needed, 167 
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samples were diluted in 0.1 μm-filtered artificial seawater prior to analysis. Flowset beads 168 

(Beckman-Coulter) were analysed at the beginning of each set of measurements and bead 169 

fluorescence was used to normalize stain fluorescence (Marie et al. 2005). 170 

 171 

Photosynthetic pigments Culture samples (20-25 mL) were centrifuged (5300 x g, 20 172 

min, 8°C), the supernatant discarded and cells were flash frozen in liquid N2 and stored at -173 

80
o
C until analysis. Samples were extracted in 0.5 mL acetone under dim light by sonication 174 

(Amplitude 35%; Vibra Cell Probe; Sonics) for 45 s. The extract was clarified by 175 

centrifugation (10,956 x g, Microcentrifuge 5415; Eppendorf). Reversed-phase high 176 

performance liquid chromatography (HPLC) was conducted using an Agilent 1200 system 177 

with photodiode array detector. Instrument control, data processing and analysis were 178 

performed using Chemstation software. Separations were performed in the reversed-phase 179 

mode using two Waters (Milford, MA, USA) Spherisorb ODS2 C18 3 μm columns (150 x 4.6 180 

mm i.d.) in-line with a pre-column containing the same phase (10 x 5 mm i.d.). A 181 

Phenomenex pre-column filter (Security Guard, ODS C18, 4 x 3 mm i.d.) was used to prevent 182 

rapid deterioration of the pre-column. Elution was carried out using a mobile phase gradient 183 

comprising acetonitrile, methanol, 0.01 mol L
-1

 ammonium acetate and ethyl acetate at a flow 184 

rate of 0.7 mL min
-1

 (Method C in Airs et al. 2001). All solvents were HPLC grade. Liquid 185 

chromatography-mass spectrometry (LCMS) analysis was performed using an Agilent 1200 186 

HPLC with photodiode array detection coupled via an atmospheric pressure chemical 187 

ionisation (APCI) source to an Agilent 6330 ion trap mass spectrometer. The HPLC 188 

conditions used were as described above. The MS was operated in the positive ion mode. 189 

LCMS settings were as follows: drying temperature 350°C, APCI vaporiser temperature 190 

450°C, nebulizer 413700 Pa, drying gas 5 L min
-1

, capillary voltage -4500 V. Methanoic acid 191 

was added to the HPLC eluent post column at a flow rate of 5 μL min
-1 

to aid ionisation (Airs 192 
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and Keely 2000). Using a combination of high resolution HPLC and LCMS (Airs et al. 2001) 193 

enabled separation and structural assignment of chlorophyll alteration products present in the 194 

samples, as well as routinely detected chlorophylls and carotenoids.  195 

DMSP and DMS Five mL of culture was sampled using gas-tight syringes and gently 196 

filtered (25 mm Whatman GF/F) using a Swinnex unit. The filter was then placed into a 4 mL 197 

vial containing 3 mL of 0.5 mol NaOH and immediately closed with a screw cap containing a 198 

PTFE/silicone septum (Alltech). The vials were kept in the dark and placed in a constant 199 

temperature heating block at 30°C overnight to equilibrate. The headspace of the vial was 200 

then analysed for DMS by piercing the septum with a gas-tight syringe and injecting 50 µL 201 

into a gas chromatograph (Shimadzu GC-2010 with flame photometric detection). The 202 

amount of DMSP particulate on the filter was then calculated with reference to standard 203 

curves and expressed as a concentration in the cells (Steinke et al. 2000). The filtrate was 204 

purged immediately to analyse culture DMS concentration. The filtrate was purged for 15 min 205 

(N2, 60 mL min
− 1

) in a cryogenic purge-and-trap system; DMS was trapped in a Teflon loop 206 

(−150°C), flash evaporated by immersing the loop in boiling water and then injected into the 207 

GC (Turner et al. 1990). After purging the DMS from the filtrate, the concentration of 208 

DMSPdissolved was determined by transferring 4 mL of the purged filtrate into a 20 mL crimp 209 

vial, to which 1 mL of 10 mol NaOH was added and topped up with 10 mL distilled water to 210 

maintain a constant analytical volume of 15 mL. The vial was immediately closed with a 211 

Teflon coated septum and later analysed by the headspace technique. DMSPtotal was measured 212 

in an unfiltered volume of culture hydrolysed with 0.5 mL of 10 mol NaOH in a vial sealed 213 

gas-tight with a PTFE-silicone septum. 214 

Results 215 

Cell culture and growth measurements 216 
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 To minimise the presence of dead cells and debris in the cultures at the beginning of 217 

the experiment, cultures were closely monitored and grown in semi-continuous mode before 218 

measurements commenced. From preliminary work it was clear that both Emiliania huxleyi 219 

and Thalassiosira pseudonana biomass would consistently achieve a final yield of 220 

approximately 2.5 x 10
6
 cells mL

-1 
with a specific growth rate (µ d

-1
) of 0.6 under our culture 221 

conditions. By calculation, nitrogen should have been limiting in both species at this point 222 

assuming cells were using nutrients in the Redfield ratio. We performed ‘add-back’ 223 

experiments to test what controlled limitation (data not shown). These experiments indicated 224 

that for T. pseudonana nitrogen clearly caused growth limitation; when nitrate was added 225 

back cell number increased. The pattern for E. huxleyi was less clear as no obvious increase in 226 

E. huxleyi biomass was stimulated by adding back either nitrate or phosphate. After the onset 227 

of stationary phase E. huxleyi cell number remained constant for 20 days whereas T. 228 

pseudonana cell number began to decline after 5 days, and over the next 20 days declined by 229 

65% (Fig. 1A). E. huxleyi coccosphere volume increased after the growth phase from a mean 230 

of about 35 µm
3
 to almost 80 µm

3
 at the end of the stationary phase. T. pseudonana also 231 

increased in cell volume, but by less than E. huxleyi coccosphere volume; the increase in cell 232 

volume stabilised after the growth phase at about 50 µm
3
 (Fig. 1A). T. pseudonana dark-233 

acclimated FV:FM (Maximum photosystem II efficiency; PS II efficiency; Kromkamp and 234 

Forster 2003) declined from a maximum of 0.6 in early log-phase to zero after 5 days in 235 

stationary phase. E. huxleyi dark-acclimated FV:FM remained constant at approximately 0.5 236 

(Fig. 1B). Culture fluorescence declined after the onset of stationary phase in both species 237 

(Fig. 1C). During this decline it was possible to discriminate two subpopulations by flow 238 

cytometry (see below). 239 

 240 

Flow cytometry and cell staining 241 
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 Light scattering. Over the transition from growth to stationary phase Emiliania huxleyi 242 

forward scatter increased and side scatter became more variable. An increase in T. 243 

pseudonana forward scatter was also evident over the transition but no obvious change in side 244 

scatter developed (data not shown). 245 

 Pigment fluorescence. During growth all Emiliania huxleyi cells had the same, slightly 246 

increasing, pigment fluorescence (data not shown). During the stationary phase all cells 247 

declined in pigment fluorescence and a ‘low-red’ subpopulation developed (Fig. 2). This 248 

subpopulation doubled in size during the stationary phase, from approximately 6 to 12% of all 249 

cells. Low-red E. huxleyi cells were not obviously different in terms of forward and side 250 

scatter compared to ‘normal’ cells. T. pseudonana cells also declined in average pigment 251 

fluorescence after the onset of stationary phase and low-red cells accounted for almost 50% of 252 

cells towards the end of the sampling period. As in E. huxleyi, T. pseudonana low-red cells 253 

did not obviously differ from normal cells in their forward and side scatter characteristics 254 

(data not shown). 255 

SYTOX green staining. E. huxleyi showed <5% labeled cells throughout the 256 

experiment; neither the low-red nor normal cells labeled with SYTOX green, indicating that 257 

almost all cells, of both cell types, had intact plasma membranes over the duration of the 258 

monitoring period. In contrast, T. pseudonana had low numbers of labeled cells (<2%) until 259 

the stationary phase whereupon the percentage of labeled cells rose rapidly to a maximum of 260 

25% on the last sampling day (Fig. 3). 261 

 CMFDA staining. Within the growth phase E. huxleyi cells showed clear differences 262 

in CMFDA metabolism. Most cells metabolised the probe and become highly fluorescent; 263 

however about 20% of cells showed no increased fluorescence and were similar to unstained 264 

controls (Fig. 4A). This difference remained roughly constant throughout the stationary phase 265 

(Fig. 4B). Further, in E. huxleyi the ‘high CMF’ population increased their CMFDA 266 
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metabolism in the stationary phase (Fig. 4C). The low red E. huxleyi cells that increased 267 

slightly in abundance throughout the experiment did not metabolise the probe; low red cell 268 

green fluorescence was comparable to unstained cells. T. pseudonana did not show this intra-269 

population variability; all cells within the population exhibited a significant decline (linear 270 

regression; p=0.001) in CMFDA fluorescence over the transition from active growth to 271 

stationary phase (Fig. 4C). However, even in the death phase, T. pseudonana cells showed 272 

CMFDA fluorescence that was elevated relative to unstained controls (data not shown). 273 

 CaspACE staining. E. huxleyi CaspACE fluorescence increased during the experiment 274 

with both types of cells (normal and low red) showing a similar level of fluorescence due to 275 

CaspACE binding. Amongst normal E. huxleyi cells there was a significant increase (linear 276 

regression; p=0.001) in CaspACE binding over time (Fig. 5). There was no significant trend 277 

(linear regression; p=0.05; Fig. 5) in T. pseudonana CaspACE fluorescence with time, and as 278 

with E. huxleyi cells, there was no obvious difference between normal and low-red T. 279 

pseudonana cells (data not shown). 280 

Photosynthetic pigments 281 

 Chemical assignment. During reversed-phase HPLC, chlorophyll allomers typically 282 

elute in the region of the chromatogram immediately prior to chlorophyll a (Walker et al. 283 

2002) and most exhibit UV-vis spectra indistinguishable from chlorophyll a. In extracts from 284 

this study, five components (I-V, Fig. 6) eluted in the region expected for chlorophyll 285 

allomers. Components I and III were assigned as 13
2
-hydroxy-chlorophyll a (see structure 286 

inset, Fig. 6) and 13
2
-hydroxy-chlorophyll a’, and components IV and V were assigned as (S)-287 

13
2
-methoxy-chlorophyll a  and (R)-13

2
-methoxy-chlorophyll a, respectively, by comparison 288 

to published MS/MS data (Table 1; Walker et al. 2002). Component II exhibited similar 289 

analytical data to Chl a (Table 1), showing a 2 Da difference in protonated molecule and 290 

common major ions in MS
2
 (Table 1). The phytyl chain of chlorophyll a is lost as phytadiene, 291 
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resulting in a loss of 278 Da during APCI-LCMS
n
 (Airs et al. 2001; Table 1). The loss of 276 292 

Da from the protonated molecule of component II indicates that the structural difference from 293 

Chl a originates on the phytyl chain and is likely to be due to an additional double bond. This 294 

component has been assigned previously in a culture of Pavlova gyrans (Bale 2010). One of 295 

the final stages in the biosynthesis of chlorophyll a is the conversion of geranylgeraniol to 296 

phytol by saturation of three of its double bonds (Rudiger 2006). Component II, referred to 297 

from here on as Chl aP276, may therefore be a biosynthetic precursor to chlorophyll a.   298 

Pigment changes during growth limitation 299 

Of the alteration products observed, methoxychlorophyll a was present at highest 300 

concentrations relative to chlorophyll a in both Emiliania huxleyi and Thalassiosira 301 

pseudonana (Fig. 7A). In both cultures Chl aP276 was highest in the active growth phase, 302 

consistent with its assignment as a biosynthetic precursor to chlorophyll a. In T. pseudonana, 303 

methoxychlorophyll a increased relative to chlorophyll a during the transition from cell 304 

division to the stationary phase (Fig. 7A). The concentration of methoxychlorophyll a stayed 305 

high relative to chlorophyll a into the diatom death phase, before declining to undetectable 306 

levels (Fig. 7A). The ratio of hydroxychlorophyll a:Chl a showed a slight increase in T. 307 

pseudonana during the transition, mirroring the profile of methoxychlorophyll a. No increase 308 

in the ratio of methoxychlorophyll or hydroxychlorophyl a to chlorophyll a was observed in 309 

E. huxleyi cultures (Fig. 7A). The carotenoid:chlorophyll a ratio remained constant in E. 310 

huxleyi (Fig. 7B) but steadily increased in T. pseudonana. In E. huxleyi, the reduction in 311 

carotenoids closely tracked the reduction in chlorophyll, consistent with a controlled 312 

reduction of cellular pigment concentration. In T. pseudonana, the increase in the 313 

carotenoid:chlorophyll ratio occurred because of a more rapid decrease in chlorophyll relative 314 

to carotenoids. 315 

DMSP and DMS 316 
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 Over the course of the experiment, E. huxleyi cultures significantly (linear regression; 317 

p=0.001) accumulated DMSP (DMSPtotal) whereas T. pseudonana DMSPtotal showed no 318 

significant relationship with time (p=0.05). Within the T. pseudonana dataset however, a 319 

decline in DMSPtotal is suggested within the stationary/death phase (Fig. 8A). The intracellular 320 

concentration of DMSP (DMSPcell; Fig. 8B) showed no significant trend with time (p=0.05) in 321 

both species over the whole course of the experiment, and was consistent within the 322 

stationary/death phase at approximately 120 mmol L
-1

 (E. huxleyi) and 35 mmol L
-1

 (T. 323 

pseudonana). However, between days 0 and 10 there was a notable increase in T. pseudonana 324 

DMSPcell from 0.7 to 34 mmol L
-1

.The divergence between DMSPtotal and DMSPcell in E. 325 

huxleyi can be explained by the increased coccosphere volume in stationary phase; E. huxleyi 326 

coccosphere volume increased with time (Fig. 1A). The concentration of DMS in both 327 

cultures increased significantly over the course of the experiment (p=0.05). In T. pseudonana 328 

DMS increased from 5 nmol L
-1

 to 90 nmol L
-1

 and from 10 nmol L
-1

 to 42 nmol L
-1

 in E. 329 

huxleyi (Fig. 8C). DMSPdissolved increased in both species after the growth phase, to around 2 330 

µmol L
-1

 in E. huxleyi and around 1.25 µmol L
-1

 in T. pseudonana (data not shown). 331 

Discussion 332 

The main finding of our work was that the response of the two model species to 333 

nutrient limitation was quite different. Establishing the specific nutrient that is limiting is 334 

important to place the work into an environmental context. Add-back experiments are a useful 335 

way of verifying the limiting nutrient (La Roche et al. 1993) and clearly indicated N-336 

limitation as the cause of growth limitation in our Thalassiosira pseudonana cultures. The 337 

add-back data were ambiguous for Emiliania huxleyi. We suggest that the timing of the add-338 

back is important and we may have been too late in adding the nutrients (which we did just 339 

before the plateau). We hypothesize that E. huxleyi cells may have already committed to 340 
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transforming into a ‘persister’ form by the time the extra nutrients were delivered and thus the 341 

add-back of limiting nutrient had no effect. We find the fact that Loebl et al. (2010) find 342 

similar patterns in E. huxleyi PS II efficiency, and biomass, under N-deprivation quite 343 

compelling as it provides support for N being the cause of growth limitation in our 344 

experiments. However, Loebl et al. (2010) used a different type of experimental manipulation 345 

(centrifugation of cells and resuspension in N-free media) which would have resulted in 346 

somewhat different environmental conditions for the cells. Regardless of the method of 347 

inducing N-limitation however, the tolerance of E. huxleyi to endure growth-limiting 348 

conditions were clearly superior to that of T. pseudonana. 349 

Knowing whether cells are viable is important in order to scale metabolic parameters 350 

such as exudation rates or primary production (Garvey et al. 2007). In this study, we have 351 

linked an assessment of viability with the alteration of two classes of compounds important in 352 

biogeochemical cycles. Viability is ‘the quality or state of being viable; the capacity for 353 

living; the ability to live under certain conditions’ (Oxford English Dictionary), and in cell 354 

biology, the concept of viability is generally extended to a notion of having the capacity to 355 

divide in the future. Whether or not a cell divides in the future will be determined by the 356 

environment and the environment may change. Therefore it is difficult to assess viability with 357 

existing live/dead staining techniques, as these do not reveal the capacity for cell division 358 

after being stained. Indeed, some staining procedures can themselves be toxic (e.g., some 359 

DNA stains; Nebe von Caron, 2000) precluding a sort of cells on the basis of their staining 360 

characteristics and subsequent monitoring for cell division. Instead, live/dead staining 361 

methods test some physiological correlate of being alive, such as membrane permeability or 362 

enzyme activity. Such physiological correlates are ‘validated’ by abolishing them via cell 363 

killing with heat, chemical fixation or some other method. Since it is possible to generate a 364 
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complicated spectrum of states with such methods, making simple categorisation difficult, 365 

and the performance of the stains is variable between species (Brussaard et al. 2001), the use 366 

of live/dead stains has been limited in eukaryotic microbial ecology (Garvey et al. 2007). 367 

Nevertheless, these methods are at present the ‘state of the art’ and they have given valuable 368 

insight into the role of mortality in the microbial foodweb (Veldhuis et al. 2001). We show 369 

here that the coccolithophore Emiliania huxleyi has a very different response to growth 370 

limitation than the diatom Thalassiosira pseudonana. Benthic ‘resting stages’ are known in a 371 

number of Thalassiosira species (Lewis et al. 1999) but during the decline in our cultures we 372 

saw no obvious change in cell morphology. The ability to form resting stages has not been 373 

recorded in this strain/clonal isolate, and even if this ability did exist, it may have been lost in 374 

culture. T. pseudonana biomass remained constant for approximately 8 days before cell loss 375 

due to lysis became apparent (Fig. 1A) and throughout this period the efficiency of PS II 376 

declined in a pattern similar to that seen in T. weissflogii (Berges and Falkowski 1998) likely 377 

indicating a process of intracellular protein degradation brought about by nitrogen 378 

deprivation. Such internal degradation leads to a dismantling of the photosynthetic apparatus 379 

and the loss of photosynthetic pigment fluorescence. Both of these processes were very clear 380 

in our dataset; the loss of pigment fluorescence (‘chlorosis’; Geider et al. 1993) correlated 381 

with decreased enzyme activity and increased membrane permeability. This process was 382 

especially clear in the diatom but a more subtle process occurred in the coccolithophore. 383 

Fluorescence due to CaspACE binding did not increase during the decline in diatom biomass. 384 

Using the same strain of T. pseudonana (CCMP 1335) Bidle and Bender (2008) noted 385 

increased CaspACE binding (expressed as % of cells stained) during the cell lysis of T. 386 

pseudonana after stationary phase. Even higher binding was observed in Fe-limited biomass 387 

declines, and CaspACE binding was most prominent in cells with low fluorescence. 388 

Upregulation of caspases may therefore be more likely under Fe-limited conditions. An 389 
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ongoing difficulty in the use of caspase-activity stains in the interpretation of cell death 390 

processes is the lack of good positive controls. Cell differentiation to a resting stage is not a 391 

recognised pathway in coccolithophores, which may instead switch to a motile, haploid form 392 

during stressful conditions and thereby exploit a different ecological niche (Frada et al. 2008). 393 

However, the persistence of E. huxleyi during stationary phase in our study did not seem to be 394 

accompanied by meiosis, as assessed by periodic microscopy on our cultures. Increases in 395 

intracellular enzyme activity were clear from both CMFDA and CaspACE results, 396 

highlighting perhaps the requirement for hydrolytic enzymatic activity to be present in the cell 397 

for the successful detection of caspase-like activity. In the absence of other measurements 398 

(see below), there are three interpretations of increased CaspACE binding in E. huxleyi; 1) an 399 

increase in proteolytic activity within the cell related to a shift to a low metabolic state (which 400 

nevertheless retains photosynthetic pigmentation), or 2) intracellular reorganisation related to 401 

the induction of meiosis, or 3) programmed cell death (PCD) in moribund cells, potentially 402 

leading to an apoptotic morphology but with intact plasma membranes (the timing of 403 

membrane permeability failure may therefore be late in E. huxleyi PCD). Of these two 404 

possibilities we suggest that 1) or 2) is the safest interpretation because we do not have 405 

accompanying measurements of the other processes thought to be part of PCD and which 406 

would result in apoptosis (e.g., DNA fragmentation, phosphatidylserine inversion). Additional 407 

complications in the interpretation of the CaspACE data are that caspases may have 408 

alternative functions to PCD (Lamkanfi et al. 2007); in general, the clan to which caspases 409 

belong (clan CD, family C14) is poorly understood in protists (Vercammen et al. 2007). 410 

Although our two species showed different responses to growth limitation in many 411 

respects, one common element was the formation of low-red or chlorotic cells. As a 412 

proportion of the total cell population chlorotic cells became more abundant in the diatom 413 
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cultures. The formation of chlorotic cells has been well noted before, in diatoms 414 

(Phaeodactylum tricornutum; Geider et al. 1993) and also in cyanobacteria (Synechococcus 415 

PCC 7942; Sauer et al. 2001). After the onset of nitrogen deprivation Synechococcus PCC 416 

7942 shows an immediate and substantial reduction in protein content leading to the 417 

formation of an ultra-low metabolism resting stage (Sauer et al. 2001). In P. tricornutum cell 418 

pigmentation changes rapidly as part of an adaptive and reversible response to self-shading 419 

thereby tuning photosynthetic activity to the available resources. Given our dataset it appears 420 

the response of E. huxleyi to nutrient limitation resembles that of Synechococcus in that whilst 421 

there was an immediate change in pigment content per cell, photosynthetic efficiency was 422 

unchanged and there was also no change in the pigment profile. Such a conclusion is 423 

reinforced by the recent finding that the high PSII repair capability of E. huxleyi means that it 424 

is well-adapted to endure nutrient deplete conditions (Loebl et al. 2010). In contrast, T. 425 

pseudonana showed a rapid decline in photosynthetic efficiency as pigment content declined 426 

and the pigment profile also changed. It is possible that the formation of chlorotic cells had 427 

different causes: in E. huxleyi, where the proportion of chlorotic cells did not increase as 428 

much as in the diatom population, the ultimate cause of cell chlorosis may have been cell 429 

cycle stage at a critical point in the onset of nutrient deprivation whereas in T. pseudonana, 430 

the higher proportion of chlorotic cells after nutrient deprivation suggests that all cells were 431 

destined to share the same fate. These two ideas are not mutually exclusive however since we 432 

did not assess the degree of cell-cycle synchrony; it may have been that the T. pseudonana 433 

cells were in synchronised division at the onset of nutrient deprivation. This seems unlikely; 434 

diatom cultures often require an experimental treatment (such as silica starvation) to induce 435 

synchrony (Hildebrand et al. 2007) and were therefore unlikely to be undergoing synchronous 436 

division. Resolving population cell cycle stage in parallel with assessments of physiological 437 

staining would be beneficial in further investigations of these responses. In conclusion, 438 
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CMFDA and SYTOX-green worked well as indicators of changing cell condition and yielded 439 

robust information. Our dataset highlights the necessity of making observations over a 440 

relatively long period in order to gather context and to avoid simple categorisations 441 

(live/dead) without such context. The increase in E. huxleyi CMFDA fluorescence during the 442 

stationary phase for example, clearly represents a process of cellular reorganisation, but cells 443 

did not become ‘more alive’. Simplifications about cell states (e.g., ‘active’ and ‘inactive’) 444 

remain difficult using existing methods. Bacterioplankton, for example, display an enormous 445 

range of metabolic states in natural populations (Smith and del Giorgio 2003; Pirker et al. 446 

2005). Development of simultaneous and multi-staining approaches in eukaryotic 447 

microbiology should help in revealing all, or most, of the physiological heterogeneity within 448 

these populations. 449 

This is the first study to investigate the formation of chlorophyll oxidation (allomer) 450 

products in conjunction with measurements of photosynthetic efficiency and loss of cell 451 

viability in phytoplankton cultures. The chlorophyll oxidation products detected, 452 

methoxychlorophyll and hydroxychlorophyll, are common products in laboratory studies of 453 

chlorophyll allomerisation reactions (Hynninen and Hyvärinen 2002; Jie et al. 2002). 454 

Methoxychlorophyll a however, has not been reported previously in eukaryotic 455 

phytoplankton. Methoxychlorophyll a and hydroxychlorophyll a increased relative to 456 

chlorophyll a from day 30 onwards in T. pseudonana cultures, by which point the dark-457 

acclimated FV:FM had declined from 0.6 to 0.1. In contrast to T. pseudonana, the relative 458 

concentration of hydroxychlorophyll a and methoxychlorophyll a remained constant in E. 459 

huxleyi, as did the dark-acclimated FV:FM and percentage of SYTOX-green stained cells. 460 

Similarly, Bale (2010) found that the relative proportion of hydroxychlorophyll a remained 461 

constant in E. huxleyi over a 40 day period in batch culture. In T. pseudonana, the reduction in 462 

maximum PS II efficiency and increase in the relative abundance of chlorophyll oxidation 463 
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products preceded the increase in the percentage of cells labeled with SYTOX-green. The 464 

relative increase in chlorophyll alteration products may therefore serve as an early indicator of 465 

loss of cell viability. Although methoxychlorophylls have not been reported previously in 466 

pigment studies of senescent phytoplankton, detritus or sediments they have been detected in 467 

cyanobacteria (R.A. Airs unpubl. data) and further high resolution LCMS studies may reveal 468 

methoxychlorophyll to be a common early transformation product in phytoplankton. 469 

Hydroxychlorophyll a has been detected in field samples from phytoplankton blooms in the 470 

Celtic Sea and North Atlantic (Walker and Keely 2004; Bale 2010), and chlorophyll allomer-471 

type components are commonly detected in field samples, even when routine rather than high 472 

resolution HPLC methods are applied (R.A. Airs unpubl. data). From the higher relative 473 

abundance of methoxychlorophyll a than hydroxychlorophyll a in our cultures, the detection 474 

of hydroxychlorophyll a in field samples indicates that the likelihood of detecting 475 

methoxychlorophyll a in field samples is good. The effect of these early chlorophyll 476 

alterations on the overall light absorption of the cell, and hence the potential of these 477 

alterations to be detected by remote methods is, however, unknown. A trace of pheophytin a 478 

(magnesium-free chlorophyll a) was detected in both cultures throughout the experiment (data 479 

not shown), contributing at levels <10% of the other chlorophyll alteration products detected. 480 

Pheophytin a has been shown to be present in healthy cells, due to its role as a primary 481 

electron acceptor of Photosystem II (Klimov 2003). Both chlorophyllide a, and its 482 

magnesium-free counterpart pheophorbide a, have been associated with senescence in earlier 483 

studies (Jeffrey and Hallegraeff 1987; Louda et al. 2002). These compounds were not 484 

detected, however, during this study. How senescence is defined within an experiment, the 485 

method of senescence induction, the timescale of experiments as well as the presence or 486 

absence of cellular enzymes (e.g., chlorophyllase) are likely to influence the specific 487 

alterations of chlorophyll a. 488 
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There are a number of sources and sinks of DMS and its precursor DMSP within the 489 

microbial foodweb. The intracellular concentration of DMSP in phytoplankton cells is the 490 

primary driver of ecosystem DMS emission, and certain microalgae synthesize DMSP in 491 

response to environmental factors such as light (Archer et al. 2010) and nitrogen depletion 492 

(Bucciarelli and Sunda 2003). DMSP can be released from algal cells by grazing and viral 493 

lysis and these pathways may also elevate DMS levels by bringing algal enzymes that release 494 

DMS from DMSP into more intimate contact with the substrate (Stefels et al. 2007). In 495 

addition bacteria demethylate DMSP, release DMS from DMSP and oxidise DMS to DMSO 496 

(Schaefer et al. 2010). Depending upon the bacterial genera present and pathways involved 497 

the DMS concentration can increase or decrease. However, it is interesting to note that the 498 

direct release by phytoplankton cells is suggested by modelling work to be the dominant 499 

factor in explaining natural DMS seasonality (Gabric et al. 2008). 500 

In order to be useful as an antioxidant or an overflow compound the intracellular 501 

concentration of DMSP would need to vary actively in response to environmental stress. To 502 

estimate intracellular DMSP concentration it is necessary to have an accurate estimate of cell 503 

volume. In coccolithophores, this is complicated by the presence of the coccolith layer, the 504 

coccosphere, around the cell and in diatoms the intracellular vacuolar space provides a similar 505 

complication. During the stationary phase, coccolithophore calcification can continue after 506 

cell division stops (Lakeman et al. 2009) potentially leading to multi-layered coccospheres. 507 

Acidification can remove coccoliths prior to cell volume measurement but unfortunately we 508 

did not do this in the present study so our conclusion of a constant DMSPcell concentration in 509 

stationary phase Emiliania huxleyi is based on an assumption of increasing cell volume. 510 

Stefels et al. (2007) point out that cells generally decrease in volume with nitrogen starvation. 511 

It is possible that in the present study the cell volume decreased whilst overall coccosphere 512 

volume increased, in which case intracellular DMSP concentration would also have increased. 513 
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We recommend measuring acidified and non-acidified samples for volume estimates in future 514 

studies. The realisation of how important this can be is currently spreading with some studies 515 

(Archer et al. 2010) acidifying to make accurate estimates of cell volume whereas older 516 

studies tended not to do this. We are not aware of any studies quantifying vacuolar changes in 517 

Thalassiosira pseudonana during nutrient limitation and taking our data at face value the 50-518 

fold increase in intracellular DMSP concentration with nitrogen starvation confirms our 519 

original hypothesis. In nutrient-replete culture diatoms generally have lower concentrations of 520 

DMSP than representatives of other major phytoplankton groups (Stefels et al. 2007), so it has 521 

often been assumed that diatoms cannot be a major source of DMS in the marine 522 

environment. However, considering the data presented here and elsewhere (Sunda et al. 2002; 523 

Bucciarelli and Sunda 2003; Harada 2009), alongside estimates that diatom primary 524 

production accounts for ~40% of the global total (Falkowski et al. 1998), it is clear that the 525 

overall diatom contribution may be greater than previously assumed. 526 

Our study indicates that two important phytoplankton species have fundamentally 527 

different responses to nutrient deprivation. These different responses reflect the ecology of 528 

their groups in nature, and our assessment of physiological state reveals that E. huxleyi is 529 

much better able to cope with nutrient deprivation than T. pseudonana, through a cellular 530 

reorganisation which may involve caspase-like activity and DMSP production. T. pseudonana 531 

shows a substantial increase in DMSP concentration in response to nitrogen limitation and 532 

dies and lyses rapidly. We show for the first time that methoxychlorophyll a appears in T. 533 

pseudonana before membrane permeability is lost and lysis begins. Methoxychlorophyll a 534 

could therefore be a useful indicator of diatom senescence.535 
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Table 1. Assignment of chlorophyll and related alteration products in cultures of Emiliania huxleyi and Thalassiosira pseudonana. 

Peak 

no. 

Main UV-vis 

absorption bands 

(nm) 

Full MS and MS
2
 ions

a,b
 Assignment 

I 430, 664 Full MS: [M+H]
+
 887 (100); MS

2
 (887): 869 ([M+H]

+
-18; 2), 609 ([M+H]

+
-278; 100), 591 ([M+H]

+
-278-18; 

50), 549 ([M+H]
+
-278-60; 15) 

Hydroxychlorophyll a 

II 432, 664 Full MS: [M+H]
+
 869 (100); MS

2
 (869): 837 ([M+H]

+
-32; 5), 593 ([M+H]

+
-276; 100), 533 ([M+H]

+
-276-60; 

80) 

Chlorophyll ap276 

III 432, 664 Full MS: [M+H]
+
 887 (100); MS

2
 (887): 869 ([M+H]

+
-18; 5), 609 ([M+H]

+
-278; 100), 591 ([M+H]

+
-278-18; 

50), 549 ([M+H]
+
-278-60; 10) 

Hydroxychlorophyll a´ 

IV 422, 664 Full MS: [M+H]
+
 901 (60), 869 (100); MS

2
 (901): 869 ([M+H]

+
-32; 25), 623 ([M+H]

+
-278; 10), 591 ([M+H]

+
-

278-32; 100), 559 ([M+H]
+
-278-32-32; 15), 531 ([M+H]

+
-278-32-60; 40); MS

2
 (869): 591 ([M+H]

+
-278; 100), 

559 ([M+H]
+
-278-32; 15), 531 ([M+H]

+
-278-60; 30) 

Methoxychlorophyll a 

V 420, 662 Full MS: [M+H]
+
 901 (90), 869 (100); MS

2
 (901): 869 ([M+H]

+
-32; 2), 623 ([M+H]

+
-278; 60), 591 ([M+H]

+
-

278-32; 60), 559 ([M+H]
+
-278-32-32; 5), 531 ([M+H]

+
-278-32-60; 50); MS

2
 (869): 591 ([M+H]

+
-278; 100), 

559 ([M+H]
+
-278-32; 5), 531 ([M+H]

+
-278-60; 30) 

Methoxychlorophyll a´ 

VI 432, 664 Full MS: [M+H]
+
 871 (100); MS

2
 (871): 839 ([M+H]

+
-32; 5), 593 ([M+H]

+
-278; 100), 533 ([M+H]

+
-278-60; 

75) 

Chlorophyll a 

 

a
All chlorophyll derivatives appear as demetallated ions due to post column demetallation prior to sequential mass scanning (Airs and Keely 

2000; see Methods). 

b
Full MS: relative abundance shown in parentheses. MS

2
: Precursor ion indicated in parentheses. MS

2
 ions: relationship to [M+H]

+
 and relative 

abundance indicated in parentheses.
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Figure legends 

Figure 1. (A) Cell number and cell volume, (B) Efficiency of Photosystem II (dark-adapted 

FV:FM), and (C) In vivo fluorescence in duplicate Emiliania huxleyi and Thalassiosira 

pseudonana batch cultures (mean and standard error) during cell division, the transition from 

cell division to stationary phase, and the death phase (T. pseudonana only).  

Figure 2. Representative biparametric plots of red and green fluorescence in Emiliania huxleyi 

and Thalassiosira pseudonana batch cultures. The plots indicate the process of chlorosis (the 

reduction in cellular pigment fluorescence over time) in batch cultures. At day 0 both species 

show single populations with consistently high red (pigment) fluorescence; by day 23 two 

populations are apparent and are highlighted by the regions overlaid on the plot. Cells 

transitional between the two states are visible, indicating that the low red population arises via 

chlorosis of the high red population. 

Figure 3. Membrane permeability (SYTOX-green staining) during nutrient depletion in 

Emiliania huxleyi and Thalassiosira pseudonana. (A) shows representative biparametric polts 

for both species at day 23. (B) shows the % of SYTOX-stained cells over time (mean and 

standard error). Note that ‘stained cells’= Q1+Q2. Q1=stained debris and stained ‘low-red’ 

cells, Q2=stained ‘normal’ cells, Q3=unstained normal cells and Q4=unstained debris and 

unstained low-red cells.  

Figure 4. Hydrolytic enzyme activity (CMFDA staining) during nutrient depletion in 

Emiliania huxleyi and Thalassiosira pseudonana. A) shows representative biparametric plots 

for both species at day 23: note the clear separation of the E. huxleyi population into a ‘high’ 

and ‘low’ CMF population as indicated by the superimposed regions on the plot. B) shows 

relative % of high and low CMF cells over the course of growth and stationary phase in E. 

huxleyi. Finally, C) shows normalised CMF fluorescence within the high E. huxleyi 
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population and all T. pseudonana cells (mean and standard error). n.b. CMF fluorescence was 

normalised to a fluorescence standard, flowset beads (see text), which were analysed 

simultaneously.  

Figure 5. Changes in CaspACE binding in normal cells (see text) during nutrient depletion in 

Emiliania huxleyi and Thalassiosira pseudonana batch cultures (mean and standard error). 

n.b. CaspACE fluorescence was normalised to a fluorescence standard, flowset beads (see 

text), which were analysed simultaneously. 

Figure 6. Partial HPLC chromatogram (660 nm) showing elution position (relative to 

chlorophyll a) of chlorophyll alteration products detected. For peak assignments see Table 1. 

Figure 7. (A) Ratio of total methoxychlorophyll a to Chl a and total hydroxychlorophyll a + 

chl a p276 to Chl a in T. pseudonana and E. huxleyi and (B) ratio of total carotenoid to Chl a in 

T. pseudonana and E. huxleyi (mean and standard error) in nutrient-limited batch cultures.  

Figure 8. (A) DMSPtotal (µmol L
-1

), (B) DMSPcell (mmol L
-1

), and (C) DMS (nmol L
-1

) in 

duplicate Emiliania huxleyi (circles) and Thalassiosira pseudonana (triangles) batch cultures 

(mean and standard error) over the batch growth cycle.  
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Figure 2
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Figure 3
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Figure 4 
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