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Spatial misalignment in time series studies

of air pollution and health data

Roger D. Peng Michelle L. Bell

December 1, 2008

Abstract

Time series studies of environmental exposures often involve comparing daily changes in a

toxicant measured at a point in space with daily changes in an aggregate measure of health.

Spatial misalignment of the exposure and response variables can bias the estimation of health

risk and the magnitude of this bias depends on the spatial variation of the exposure of interest.

In air pollution epidemiology, there is an increasing focus on estimating the health effects of

the chemical components of particulate matter. One issue that is raised by this new focus is

the spatial misalignment error introduced by the lack of spatial homogeneity in many of the

particulate matter components. Current approaches to estimating short-term health risks via

time series modeling do not take into account the spatial properties of the chemical components

and therefore could result in biased estimation of those risks. We present a spatial-temporal

statistical model for quantifying spatial misalignment error and show how adjusted heath risk

estimates can be obtained using a regression calibration approach and a two-stage Bayesian

model. We apply our methods to a database containing information on hospital admissions, air

pollution, and weather for 20 large urban counties in the United States.

1 Introduction

Estimating the health risks of environmental exposures often involves examining data at different

levels of spatial resolution. This mismatch between data measured at different resolutions results
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in spatial misalignment (Banerjee et al., 2004) which can induce error and bias estimates of risk.

Spatial misalignment in environmental health studies is common because the exposure data and the

health data often come from independent sources. For example, in an air pollution study in the

US, data on ambient air pollution levels often is based on a network of monitors operated by the

US Environmental Protection Agency (EPA) where each monitor measures pollution at a specific

point location. Data on an outcome of interest, such as the numbers of hospital admissions for

cardiovascular disease, might come from the Centers for Medicare and Medicaid Services. In cohort

studies which compare health outcomes and exposures across people, information about individual

persons may be available but exposure data may be derived from a computer model at a much lower

resolution. Because health and exposure data are often collected independently of each other, they

are rarely spatially aligned. Hence, a direct comparison of the exposure and health outcome is not

possible without a model (or an assumption) to align the two in the spatial domain.

1.1 Air pollution and health

In a time series study of air pollution and health, one is interested in estimating associations between

daily changes in county-wide hospital admissions or mortality counts with daily changes in county-

wide average levels of a specific pollutant. The problem is that we do not directly observe county-wide

average pollutant levels. Rather, we have measurements taken at a handful of monitors (sometimes

only one) located inside the county boundaries. For a spatially homogeneous pollutant, the value

of the pollutant at a single monitor can be representative of the county-wide average ambient level

of that pollutant. Some pollutants, particularly some gases such as ozone, are reasonably spatially

homogeneous across the area of a county. The total mass of particulate matter (PM) less than 2.5

µm in aerodynamic diameter (PM2.5), whose health risks have been examined extensively, is fairly

spatially homogeneous and monitor measurements of PM2.5 in counties with multiple monitors tend

to be highly correlated across both time and space (Peng et al., 2008; Bell et al., 2006). With a

pollutant such as PM2.5 the misalignment beteween the continuous nature of the pollutant process

and the aggregated nature of the health data does not typically pose as serious a problem as some

other pollutants. In this situation, current approaches for data analysis are generally adequate.
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Recently, data have become available from the US EPA’s Chemical Speciation Trends Network

(STN) as well as State and Local Air Monitoring Stations which provide daily mass concentrations

of approximately 60 different chemical elements of PM2.5. These data are monitored in over 200

locations around the US starting from the year 2000. Although the data are promising and will be

a source of substantial new research, they also raise new statistical challenges. In particular, the

usual assumption of spatial homogeneity of the exposure pollutant is less tenable when examining

certain components of PM2.5 (Bell et al., 2006).

Much of the spatial heterogeneity in the chemical components measured by the STN can be

explained by the nature of the sources of the various components. For example, elemental carbon

(EC) and organic carbon matter (OCM) tend to be emitted primarily from vehicle or other mobile

sources and thus their spatial distribution can depend on the localized nature of those sources.

Secondary pollutants such as sulfate and nitrate are created in the air by the chemical and physical

transformation of other pollutants and tend to be more regional in nature. Hence, for spatially

heterogeneous pollutants such as EC or OCM, the daily level of those pollutants at a single monitor

may be a poor surrogate for the daily county-wide average ambient level of that pollutant.

Although we focus mainly on time series studies in this paper, spatial misalignment can also

induce error in spatial (cross-sectional) studies of air pollution and health. Gryparis et al. (2008)

demonstrate in detail how to handle the misalignment errors in these types of studies and compare

the performance of a number of different statistical approaches. An alternate modeling approach

has been proposed by Fuentes et al. (2006) for estimating the spatial association between speciated

fine particles and mortality. Both approaches introduce a spatial model for the monitored pollutant

concentrations and either predict pollutant values at unobserved locations or compute area averages

over counties to link with county-level health data. While much work has been done illustrating

the problem of spatial misalignment for cross-sectional studies, little has been done for time series

studies estimating short-term health effects.

With the emergence of the PM components data and the critical interest in estimating the health

effects of those components, the problem of spatial misalignment becomes more important and new

statistical methods need to be developed to properly analyze these data. Specifically, there is a
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need to develop approaches that account for the varying amounts of spatial information we have

about chemical component levels over wide regions. These methods could be used to estimate and

report health risks associated with PM components while simultaneously incorporating the spatial

information (or lack thereof) we have for each component.

In this paper we describe a general method for estimating health risks associated with PM

components from time series models while adjusting for potential spatial misalignment error. We

first develop a spatial–temporal model for the exposure of interest and estimate the degree of spatial

misalignment error for each component in a location. We then apply two methods—a regression

calibration procedure and a two-stage Bayesian model—to estimate the health risks associated with

these components and compare the results to standard approaches. Our methods are applied to a

large database containing information on daily hospital admissions for cardiovascular diseases and

chemical components of ambient particulate matter for 20 large urban counties in the United States.

2 Current Methods

Current approaches to time series analysis of air pollution and health data typically use county-level

health data and treat the day as the temporal unit of analysis. On a given day, the outcome is the

count of the number of hosptializations for a specific disease occurring in that county or perhaps the

number of deaths due to a specific cause. The exposure is typically the level of a pollutant recorded

at a monitor located within the county boundaries on that day. If there are multiple monitors located

in the county (sometimes between 2 and 10), then an average of the available monitors on that day

is used as a single exposure concentration. For example, in the National Mortality, Morbidity, and

Air Pollution Study (NMMAPS), multiple monitors were averaged using a 10% trimmed mean to

remove any outlying large or small values (Samet et al., 2000a). Similar approaches have been taken

in other time series studies (Katsouyanni et al., 2001).

For a given county there is a time series for the outcome yt and a single time series for the exposure

pollutant w̄t which might represent the daily averages across multiple monitors. Generalized additive

models are often used to estimate the day-to-day association between the two time series while

controlling for the potential confounding effects of weather, season, and other factors (Peng et al.,
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2006; Welty and Zeger, 2005; Touloumi et al., 2004). Log-linear Poisson models are commonly used

with smooth functions of time, temperature, and dew point temperature (or relative humidity),

log E[Yt] = α + θ w̄t + β′zt + s(t, λ1) + s(tempt, λ2) + s(dewptt, λ3) (1)

where Yt is the count of the number of events (i.e. admissions, deaths), zt represents a vector

of covariates (e.g. indicators for the day of the week, age category-specific interecepts), s is a

smooth function, and the λis are smoothing parameters controlling the smoothness of their respective

functions. Common choices for the smooth functions include penalized splines, smoothing splines,

and parametric natural splines. Variations on the model in (1) are used, depending on meteorological

or other local conditions.

The parameter of interest is θ, the log-relative risk of the exposure w̄t, with the remaining ele-

ments of the model being nuisance parameters. When total mass particulate matter is the exposure

of interest the risk is often reported as 100 × (exp(10 θ) − 1), which is the percent increase in the

outcome for a 10 µg/m3 increase in PM. Another common increment for reporting risk estimates is

the interquartile range (IQR) of the pollutant data.

One key assumption made by current approaches is that the monitor value (or average of monitor

values) represents the average ambient concentration. For some pollutants such as PM2.5 total mass

this assumption is approximately true. However, for many components of PM2.5, the observed

spatial heterogeneity of the component raise concerns about whether the monitor values are good

surrogates for the average ambient concentration.

In the next section we present a model for assessing the degree of spatial misalignment measure-

ment error when using PM chemical components data and an approach for adjusting estimates of

the short-term health risks of PM chemical components obtained from time series regression models.
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3 Statistical Model for Spatial Misalignment

3.1 Spatial–temporal model for exposure

We assume that for a given time t and point location s, a pollutant can be modeled by a spatial

stochastic process

w(s, t) = µ(s, t) + ε(s, t)

where µ(s, t) is a fixed effect term and ε(s, t) is a mean zero Gaussian process with variance σ2 and

correlation function ρ(·, ·). We further assume an isotropic covariance model so that

Cov(ε(s, t), ε(s′, t′)) =

 σ2 ρ(‖s− s′‖) t = t′

0 t 6= t′

where ‖ · ‖ is the Euclidean distance between two points. In this formulation we do not model the

temporal correlation structure and assume the data are independent in time conditional on the fixed

effect µ(s, t), which may contain nonparametric smoothers of time and/or space. Previous studies

have shown that after adjustment for seasonal variation and temperature, there is relatively little

autocorrelation left in the data. Furthermore, given that the data in which we are most interested

are sampled only once every six days, we expect the residual autocorrelation to be small. For the

correlation function ρ, we use the flexible Matérn correlation function with parameters φ and κ,

which has the form

ρ(u;φ, κ) =
1

2κ−1Γ(κ)

(
u

φ

)κ

Kκ

(
u

φ

)
for φ > 0, κ > 0, where K is the modified Bessel function of the third kind. We make use of the

geoR R package implementation of this model (Ribeiro and Diggle, 2001).

Let wt = (w(s1, t), . . . , w(sn, t)) and µt = (µ(s1, t), . . . , µ(sn, t)) where s1, . . . , sn are the locations

of all the monitors in the pollutant monitoring network. Then for a given time point t, the observed

data at that time point follow the distribution wt ∼ N (µt, σ2 H(φ, κ)), where H is an n × n

correlation matrix with elements

[H(φ, κ)]ij = ρ(‖si − sj‖;φ, κ). (2)

and ρ is the Matérn correlation function. The joint likelihood for the data across all time points is
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then

L(σ, φ, κ) ∝
T∏

t=1

σ−1|H(φ, κ)|−1/2 exp
(
− 1

2σ2
(wt − µt)

′H(φ, κ)−1(wt − µt)
)

(3)

where the matrix H(φ, κ) is defined as in (2). The likelihood in (3) can be maximized using standard

nonlinear optimization techniques to obtain the maximum likelihood estimates for the parameters

σ, φ, and κ as well as any parameters incorporated into µt. To obtain standard error estimates we

use the diagonal of the inverse Hessian matrix calculated at the maximum (Nocedal and Wright,

1999).

3.2 Spatial misalignment error model

On a given day t, a monitor in a county can be thought of as providing a surrogate measurement for

the county-wide average ambient concentration (for now assume there is only one monitor located in

the county). We call this observed monitor value w̄t, which is the concentration of the component on

day t at the monitor location. Let xt be the true but unobserved county-wide average concentration

of the pollutant on day t. The difference between the two values can be described with a classical

measurement error model, so that

w̄t = xt + ut (4)

where ut is a random variable with E[ut] = ηt and Var(ut) = τ2
u . The extent to which w̄t differs

from xt is the spatial misalignment error and τ2
u is the error variance. In practice, we occasionally

have more than one monitor in a county, so that w̄t reflects the average of the available monitors on

day t. As the number of monitors increases, we would expect τ2
u to decrease. Note that the nonzero

mean ηt for ut arises from the inclusion of fixed effects µ(s, t) in the spatial-temporal model for the

pollutant w(s, t). If desired, this could be removed by first detrending all of the data but it plays no

role in our analysis.

If a pollutant is inherently spatially homogeneous, then τ2
u will likely be small and w̄t will generally

serve as a good surrogate for the true county-wide average xt, even with just a single monitor. If

the pollutant is inherently spatially heterogeneous then τ2
u will likely be large and w̄t serves as a

poor surrogate for the county-wide average. PM components such as elemental carbon and silicon,

as well as the coarse fraction of PM, tend to fall into this latter category.
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The classical measurement error model appears appropriate for this situation because we would

expect pollutant values at an individual monitor to be more variable over time than the county-wide

average. The other assumption made by the classical model is that the errors are independent of xt.

We will examine this assumption further in the data analysis. Ultimately, it may be that the neither

the classical nor the Berkson model truly describes the relationship between the observed data and

the underlying county-wide average, but the classical model seems reasonable in this application.

Given that a single monitor value can be a poor surrogate for the county-wide average ambient

concentration, our goal is to use information from other monitors in neighboring counties to obtain a

better estimate of the county-wide average. With a spatial–temporal model for the underlying pollu-

tant process, we can estimate the county-wide average concentration on each day and subsequently

use those estimated concentrations to obtain health risk estimates for the pollutant.

3.3 Estimating misalignment error

Suppose we have a county represented by polygon A with monitors located at coordinates v1, . . . ,vm

within the county boundaries. Then

w̄t =
1
m

m∑
i=1

w(vi, t)

xt =
1
‖A‖

∫
A

w(s, t) ds

Note that the locations v1, . . . ,vm will be a subset of all the locations s1, . . . , sn used to fit the

spatial model for w(s, t) above.

In a typical air pollution application the number of monitors m in a county might range from

1 to 10. One intermediate target of inference is the misalignment error variance τ2
u = Var(ut) =

Var(w̄t−xt) for a given county. The monitor values inside the county w(v1, t), . . . , w(vm, t) and the

true county-wide average xt have a joint Normal distribution

w(v1, t)
...

w(vm, t)

xt


∼ N


 µt

µx,t

 , σ2

 H11 H12

H21 H22


 (5)
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where

µx,t =
1
‖A‖

∫
A

µ(s, t) ds

and

[H11]ij = ρ(‖vi − vj‖;φ, κ)

[H12]i =
1
‖A‖

∫
ρ(‖vi − s‖;φ, κ) ds

H21 = H ′
12

H22 =
1

‖A‖2

∫∫
ρ(‖s− s′‖;φ, κ) ds ds′

The spatial misalignment error variance τ2
u for the county can then be calculated as

τ2
u = σ2

 1
m2

∑
i,j

[H11]ij −
2
m

∑
i

[H12]i + H22


= σ2

 1
m2

∑
i,j

ρ(‖vi − vj‖;φ, κ)− 2
m

∑
i

1
‖A‖

∫
ρ(‖vi − s‖;φ, κ) ds

+
1

‖A‖2

∫∫
ρ(‖s− s′‖;φ, κ) ds ds′

]
The values of σ2, φ, and κ are unknown and so we plug in the maximum likelihood estimates of

those parameters to obtain our estimate of τ2
u . Because the integrals required above are all over

the domain of the county boundary, which is likely to be highly irregular, we use a Monte Carlo

approximation. We generate random variables p1, p2, . . . , pB which have a uniform distribution over

the area A and then calculate

1
‖A‖

∫
ρ(‖si − s‖;φ, κ) ds ≈ 1

B

B∑
j=1

ρ(‖si − pj‖;φ, κ)

1
‖A‖2

∫∫
ρ(‖s− s′‖;φ, κ) ds ds′ ≈ 1

B2

B∑
j=1

B∑
j′=1

ρ(‖pj − pj′‖;φ, κ)

These approximations can be made arbitrarily accurate by increasing the number of sample points B.

It is important to note that although our estimate for τ2
u is for a specific county, we use data from

all available monitors (including ones outside the county) to obtain the estimate of τ2
u .
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3.4 Risk estimation

Let wt = (w(s1, t), . . . , w(sn, t)) represent the observed data for all of the monitors on day t. Using

the spatial–temporal model and the joint distribution in (5), the conditional distribution of the true

unobserved county-wide average xt given the data is

xt | wt ∼ N (µx,t + H ′
12H

−1
11 (wt − µt), σ2(H22 −H ′

12H
−1
11 H12)) (6)

where maximum likelihood estimates of σ2, φ, and κ are plugged in where necessary. We use this

conditional distribution to adjust estimates from health risk models in two different ways.

3.4.1 Two-stage Bayesian model

The main approach we describe for adjusting risk estimates for spatial misalignment error is a two-

stage Bayesian model. In the first stage we estimate r(xt | wt), which is simply the distribution

in (6), i.e. the posterior distribution of xt given the data wt for each t. The second stage uses

r(xt | wt) as an informative prior for xt and estimates the joint posterior distribution of θ and

x = (x1, . . . , xT ), given the health data y and the observed pollutant data w,

p(θ,x | y,w) ∝ p(y | θ,x,w)r(x | w)π(θ)

=

[
T∏

t=1

p(yt | θ, xt,wt)

] [
T∏

t=1

r(xt | wt)

]
π(θ)

where y = (y1, . . . , yT ), w = (w1, . . . ,wT ), and π(θ) is a diffuse prior distribution. The likeli-

hood terms p(yt | θ, xt,wt) represent the Poisson likelihood used for the time series model relating

pollutant exposure to health outcomes. Details on that part of the model are shown in Section 4.2.

Note that in a full Bayesian model the target marginal posterior of θ given the data is

p(θ | y,w) =
∫

p(θ,x | y,w) dx

=
∫

p(θ | x,y,w)p(x | y,w) dx

Our two-stage approach effectively assumes that p(x | y,w) ≈ r(x | w), thus cutting the feedback

betwen x and y. Given that previous studies have indicated that the relationship between the

health outcome y and the pollutant exposure x is generally weak, this assumption is not likely to be

unreasonable. Furthermore, we obtain the tremendous practical advantage of separating the model
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into two stages so that the substantial work of fitting the spatial model in the first stage (as well

as the model checking) can be conducted separately from the parameter estimation in the second

stage.

The posterior distribution of θ given the data can be sampled using Markov Chain Monte Carlo

techniques. Specifically, we use a hybrid Gibbs sampler and alternate sampling from the full condi-

tional distributions of x and θ. Details of the sampling algorithm can be found in the Appendix.

3.4.2 Regression calibration

As an alternative to the two-stage Bayesian model, we can us a regression calibration type of ap-

proach (Carroll et al., 2006). Using the distribution in (6), we can calculate E[xt | wt] for each day

t. Then, substituting E[xt | wt] in place of w̄t and conducting the standard analysis described in

Section 2 would give us the regression calibrated estimate of our risk parameter θ. This method

should produce estimates that are similar to the two-stage model and has the advantage that it

requires substantially less computation

4 Application

Daily counts of hospital admissions for the period 2000–2006 were obtained from billing claims

of enrollees in the US Medicare system. Each billing claim contains the date of service, disease

classification (International Classification of Diseases 9th Revision [ICD-9] codes), age, and county of

residence. We considered as an outcome urgent or emergency hospital admissions for cardiovascular

diseases, which were calculated using ICD-9 codes (Dominici et al., 2006). The daily counts of

hospitalizations were calculated by summing the hospital admissions for each disease of interest

recorded as a primary diagnosis. To calculate daily hospitalization rates, we constructed a parallel

time series of the numbers of individuals enrolled in Medicare that were at risk in each county on

each day. We restricted the analysis to the 20 larges counties in the country with at least 100

observations on components of PM2.5 over the 7 year period of 2000–2006.

In the US, chemical components of PM2.5 are typically measured once every six days and patterns

of missing data vary depending on when monitors began collecting data regularly. For this analysis
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Figure 1: Locations of 313 chemical speciation monitors in the US, 2000–2006.

we do not attempt to impute the data and only use the days for which we have observations for all

relevant variables. Our analysis was limited to the components making up a large fraction of the

total PM2.5 mass or co-varying with total mass. These components were sulfate, nitrate, silicon,

elemental carbon (EC), organic carbon matter (OCM), sodium ion, and ammonium ion. These seven

components, in aggregate, constituted 83% of the total PM2.5 mass, whereas all other components

individually contributed less than one percent (Bell et al., 2006). In total, we obtained data from 313

chemical speciation monitors across the US. A map of the monitor locations is shown in Figure 1.

National temperature and dew point temperature data were obtained from the National Climatic

Data Center on the Earth-Info CD database.

4.1 Estimation of spatial–temporal model

For each of the seven chemical components, we fit the spatial-temporal model described in Section 3.

Because we are only interested in short-term associations between chemical components and health

outcomes, before fitting the model, we detrended the time series for each component, removing any

seasonal fluctuations and long-term trends. To detrend the data, we fit a linear model with the

monitor value for the component as the response and the day of the week, a natural spline of time
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with 49 degrees of freedom (i.e. 7 degrees of freedom per year), and temperature as predictors. The

residuals from this model were then used as our new chemical component predictor variable.

In Table 1 we show the estimates of the parameters in the Matérn model for each of the seven

components. Asymptotic standard errors for the parameters were obtained by inverting the Hessian

matrix estimated from maximizing the log-likelihood. The parameter estimates produce correlation

σ φ κ

Sulfate 1.25(0.0016) 5.32(0.0716) 0.12(0.0012)

Nitrate 1.23(0.0016) 2.86(0.0500) 0.16(0.0022)

Silicon 0.39(0.0005) 6.57(0.1296) 0.06(0.0009)

EC 0.61(0.0008) 8.98(0.2794) 0.03(0.0006)

OCM 1.54(0.0020) 7.14(0.1574) 0.06(0.0009)

Sodium Ion 0.49(0.0006) 10.25(0.6736) 0.01(0.0005)

Ammonium 0.88(0.0011) 4.78(0.0709) 0.12(0.0013)

Table 1: Maximum likelihood parameter estimates for Matérn model with asymptotic standard

errors in parentheses.

functions that generally agree with our knowledge of the spatial distribution of the these chemi-

cal components. For sulfate, nitrate, and ammonium the decrease in correlation with distance is

generally slower than for silicon, EC, OCM, and sodium ion. For all of the components, the small

estimates of κ indicate a non-differentiable process and produce a rapid decrease in correlation at

short distances followed by a slower decrease at longer distances.

4.1.1 Model checking

To examine the fit of the spatial–temporal model we divided the n monitors randomly into eight

groups and conducted an 8-fold cross validation. At each iteration, we held-out one group of monitors

and fit the model using the monitors from the remaining seven groups. We then used the fitted model

to predict all the values at the held-out monitors. We used mean squared error to summarize the

model’s performance.
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Sulfate Nitrate Silicon EC OCM Sodium Ion Ammonium

RMSE 1.00 0.47 0.04 0.09 0.85 0.02 0.40

RMSE / Median 0.34 0.50 0.68 0.17 0.26 0.34 0.31

Table 2: Root mean squared error for prediction of spatial-temporal model at held-out monitors.

Table 2 shows root mean squared errors for the spatial–temporal model from the 8-fold cross

validation. We also show the RMSE divided by the median levels of each chemical component so

that the RMSE can be compared across the different scales of variation of the chemical components.

Table 2 is meant to give some sense of the prediction accuracy of the spatial-temporal model.

However, it should be noted that the ultimate purpose of the model is to predict the county-

wide average chemical component level. Predicting chemical component concentrations at specific

locations is used here as a measure of model fit, albeit an imperfect one.

We also checked the assumptions of the measurement error model in (4), which assumes that the

errors ut are independent of the true county-wide average values xt. For each county in the analysis

we held out the monitors inside the county and fit the spatial-temporal model to the remaining

monitors. We then compared the estimate of the county-wide average based on the monitor values

inside the county, w̄t, and the posterior mean of the true county-wide average, xt, obtained from the

model. After calculating ut = w̄t−xt, the correlation between xt and ut, on average across locations

and chemical components, was 0.27, indicating a relatively weak correspondence between the two.

4.1.2 Spatial misalignment error

Using the fitted spatial–temporal model, we can compute estimates of τ2
u , the spatial misalignment

error variance from (4), for each of the seven chemical components and each county. For each compo-

nent we can also calculate estimates of σ2
x, the temporal variance of the true unobserved county-wide

average component level. Table 3 shows for each of the 20 counties and seven components the spatial

misalignment error variance ratio, which is the ratio of the spatial misalignment error variance to

the variance of true county-wide average, i.e. τ2
u/σ2

x. We can see that the components silicon, EC,

OCM, and sodium ion generally have much larger error ratios than the other three components. In

14
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addition, there appears to be a correspondence between the error ratios and size of the county (by

area) as well as the number of monitors.
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4.1.3 Monitor coverage

To assess the relationship between the number of monitors in a county and the degree of spatial

misalignment error, we fit a linear regression of the form

log2

τ2
u

σ2
x

= β0 + β1 log2(# of Monitors in a County) + β2 log2(County Area)

The data for this model are taken from Table 3 and we fit a separate model for each chemical

component. In this model, β1 can be interpreted as the change in the spatial misalignment error

ratio with a doubling of the number of monitors in the county. In order for this quantity to be

interpretable we have to adjust for the area of the county first.

In each of the panels of Figure 2 we plot for each county the partial residuals for the number

of monitors on the x-axis and the partial residuals for the spatial misalignment error ratio τ2
u/σ2

x

on the y-axis (both are on a log2 scale). The estimated values of β1 for each component are shown

inside the individual panels in Figure 2. Given β̂1, we can compute 100 × (2β̂1 − 1), which is the

percent change in the proportion of spatial misalignment error associated with doubling the number

of monitors in a county, adjusting for a county’s area.

It appears that for each component, counties with more monitors in them (adjusted for the

total area of the county) have smaller spatial misalignment error variance ratios. For example,

when estimating county-wide average nitrate levels, counties with 2 monitors rather than 1 have an

approximately 35% decrease in the spatial misalignment error variance ratio. For elemental carbon,

the benefit of going from 1 to 2 monitors is a 46% decrease in the error ratio and for sodium ion there

is a 48% decrease. While the spatial misalignment error generally decreases for all PM components

when the number of monitors increases, the benefit is especially pronounced for silicon, EC, OCM,

and sodium ion. Thus, for more spatially heterogeneous components, more benefit (i.e. less spatial

misalignment error) is gained by additional monitor coverage than for components that are spatially

homogeneous.
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Figure 2: The (log2) spatial misalignment error ratio versus the (log2) number of monitors in a

county, adjusted for county area.

4.2 Risk estimation

For each county, we fit the following log-linear Poisson model to the health and chemical component

data, which is an extended version of the model in (1).

log E[Yt] = α + θ xt + s(t, λ1) + s(tempt, λ2) + s(dewptt, λ3)

+ log(# at riskt) + γ dowt + s(temp1–3,t, λ4) + s(dewpt1–3,t, λ5)

Yt is the number of admissions for cardiovascular disease and xt is the county-wide average of

the chemical component being examined. When we use the regression calibration approach, xt is

estimated using the regression calibration function E[xt | wt] and with the two-stage Bayesian model

the values of xt are sampled from the full conditional distribution within the MCMC iterations. We

assume that the variables other than the pollutant variable are measured without error.

The additional terms in the model represent an offset for the number of people at risk, the day of

the week, a smooth function of the three day running mean of temperature, and a smooth function

18

http://biostats.bepress.com/jhubiostat/paper176



of the three day running mean of dew point temperature. The running means of temperature are

included to capture the effects of temperature in the winter (Samet et al., 1998). For the smooth

functions we used λ1 = 49, λ2 = λ4 = 6, and λ3 = λ5 = 3. These values have been used previously

and generally capture the variation in season as well as temperature (Peng et al., 2006; Welty and

Zeger, 2005).

Estimates of the risk parameter θ are shown in Table 4. The results are shown for estimates

obtained using standard maximum likelihood, which ignores the spatial misalignment problem, as

well as regression calibration and the two-stage Bayesian model which explicitly adjust for spatial

misalignment error. For the Bayesian model we use the posterior mean as our point estimate and the

posterior standard deviation as our measure of uncertainty. Table 4 shows the five largest counties

(by population) of the 20 counties we examined.

The point estimates from the regression calibration procedure and the two-stage Bayesian model

are generally in agreement given the uncertainties. The standard errors for the Bayesian estimates

tend to be slightly larger than the standard errors obtained using the regression calibration proce-

dure. We see in Table 4 that the chemical components that exhibited greater spatial misalignment

error resulted in larger adjustment for their estimated risk parameters. However, for components

where there did not appear to be a strong association to begin with (e.g. silicon), the adjusted

estimates from the regression calibration and Bayesian models were not substantially different from

the maximum likelihood estimates.

Figures 3 and 4 show the risk estimates from the three models for elemental carbon and sulfate,

respectively, in all 20 counties. Elemental carbon is relatively heterogeneous spatially and we see

that for a number of counties the adjustment for spatial misalignment changes the point estimate

substantially. Sulfate is much more spatially homogeneous and we can see from Figure 4 that

the adjustment for spatial misalignment has little effect here. Analogous figures for the remaining

components can be found in the supplementary materials.
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Figure 3: Percent increase in cardiovascular hospital admissions per 1 interquartile range

(0.40 µg/m3) increase in elemental carbon estimated using maximum likelihood (open circle), re-

gression calibration (triangle), and the two-stage Bayesian model (filled circle).
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Figure 4: Percent increase in cardiovascular hospital admissions per 1 interquartile range

(3.06 µg/m3) increase in elemental carbon estimated using maximum likelihood (open circle), re-

gression calibration (triangle), and the two-stage Bayesian model (filled circle).
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5 Discussion

We have presented a statistical model for estimating and adjusting for spatial misalignment error in

time series studies of air pollution and health. We demonstrated a regression calibration approach

that is computationally very efficient as well as a two-stage Bayesian model. These approaches

were used to estimate the risk of cardiovascular hospitalization associated with exposure to chemical

components of particulate matter.

Our findings indicate that the degree of spatial misalignment is a function of monitor coverage

within a county and the pollutant of interest. In general, a decrease in the amount of area covered

per monitor in a county is associated with lower spatial misalignment error, however this effect is

far more pronounced for pollutants that are heterogeneous such as sodium ion, silicon, and EC. In

particular, for counties with only one monitor, it would seem there may be some benefit to using

one additional monitor in the county.

However we must be cautious in translating our results into specific recommendations for monitor

placement. Our analysis did not take into account the placement of the monitors in the county

and the density of the population. For counties with very high population density concentrated

in one specific area, a single monitor might be sufficient and it would make little sense to place

monitors throughout the county where few people live. Further research is certainly needed in order

to determine the optimal usage and placement of pollution monitors. The design of monitoring

networks is generally important for regulatory purposes and cost tradeoffs may be prohibitive as

well. Our methodology could be extended to provide a quantiative basis for assessing the placement

of monitors.

In our application we found that health risk estimates for EC, a pollutant exhibiting large spatial

heterogeneity, were generally larger using approaches that accounted for spatial misalignment. The

adjusted estimates exhibited the classic bias-variance tradeoff with their substantially inflated stan-

dard errors. This increased statistical uncertainty comes from accounting for the lack of information

about levels of the pollutant at all points in the county. For homogeneous pollutants (e.g. sulfate,

ammonium), the information available from the monitoring network provides sufficient information

about county-wide levels so that adjusted risk estimates are largely unchanged.
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Both the regression calibration approach and the two-stage Bayesian model produced similar

adjusted risk estimates in the 20 counties analyzed. However, in general, regression calibration

should be used with care in generalized linear models with nonlinear link functions because a separate

bias can be introduced in those situations (Carroll et al., 2006). Although we employed log-linear

models in this application, the small size of the regression coefficients likely produced a nearly linear

model, potentially explaining the similar estimates given by the two approaches.

There exist several alternative approaches to estimate exposures for locations without monitors

and also for temporal periods without measurement for use in health-based air pollution research.

These include inverse distance weighting incorporating population density (Ivy et al., 2008), air

quality modeling (Bell, 2006), and kriging (Leem et al., 2006). However, some of these approaches are

computational intensive and rely on datasets beyond those typically used in epidemiological settings.

Our approach has the advantage of relying exclusively on existing datasets that are commonly used

in air pollution studies, and our results can provide insight into the interpretation of results based

on simple county-average exposure metrics, such as results across different components or areas with

different monitor coverage.

One improvement that could be made to our model is to incorporate population density infor-

mation if available. In our spatial-temporal pollutant process, we create the county-wide averages

by integrating the process against a uniform density over the county boundary. However, if we could

specify a function g(s) which indicates the population density at location s, then we could compute

the following county-wide average instead,

xt =
∫

w(s, t)g(s) ds.

This value xt might reflect more accurately the population-level exposure than our current approach.

We consider this an interesting avenue for future work. Another natural extension of our model would

be to extend it to the multi-site setting where data are available for many locations. Our approach

here was to apply the single-location model described in Section 3 independently to each avail-

able county. However, a unified model for multiple locations would estimate location-specific risks

simultaneously while taking into account the spatial correlation between the county-wide average

pollutant levels.
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There are many sources of measurement error in the analysis of air pollution and health data

and much previous work has focused on the mismatch between personal and ambient exposures

to an airborne pollutant (Dominici et al., 2000; Zeger et al., 2000). This is indeed an important

problem, although it is typically not one that can be dealt with usefully given the types of data

that are routinely available. A key assumption made in previous time series analyses of air pollution

and health data is that the pollutant of interest is spatially homogeneous and that the spatial

misalignment error is negligible (Zeger et al., 2000). Often, this assumption was justifiable, given

that most previous analyses focused on pollutants such as the total mass of particulate matter

(PM10, PM2.5), ozone, other pollutants which have been shown to be fairly spatially homogeneous

over relatively long distances (Samet et al., 2000b).

Ultimately, the best way to address the problem of spatial misalignment might be to move away

from the county-based summaries of the outcome of interest when possible and begin using sum-

maries with finer spatial resolution, such as zip codes. Unfortunately, many types of health data are

simply not available at finer spatial resolution and we often must accept what is available. Further,

due to activity patterns, a high spatial resolution does not necessarily better capture personal expo-

sure than a larger area when individuals move between areas (e.g., live in one zip code, but work in

another). Thus, there is a strong need for methods that address spatial misalignment of air pollutant

concentrations used in health studies. In such cases the methods proposed here should be useful for

determining the magnitude of the errors incurred and for obtaining adjusted risk estimates.
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A Algorithm for Fitting the Two-Stage Bayesian Model

We propose the following Metropolis-Hastings sampling algorithm for sampling from the joint poste-

rior density of θ and x, where x represents the vector of unobserved true county-wide daily average

chemical component levels and w is the vector observed daily monitor average values. Briefly,

the full conditionals for both θ and x are sampled using a Metropolis-Hastings rejection step. All

calculations were done using R version 2.7.1 (R Development Core Team, 2008).
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We make use of the profile likelihood for θ and x which profiles out the many nuisance parameters

in the likelihood (Cheng and Kosorok, 2008). These parameters include the spline coefficients for

the smooth function of time and the nonlinear functions of temperature and dew point temperature.

Let η be the vector of nuisance parameters in the full likelihood. We evaluate the profile likelihood

Lp(θ,x) = maxη Lf (θ,x,η) where for each pair of values (θ,x) we maximize the full Poisson likeli-

hood Lf with respect to η. This can be done simply by fitting a standard generalized linear model

with an offset for θ and x. Then in the Metropolis-Hastings steps to sample θ and x, we use the

profile likelihood to calculate the acceptance ratios.

1. Sampling θ. We use a random walk Metropolis-Hastings step so that the proposal distribution

at step i is

θ? | θ(i−1) ∼ N (θ(i−1), V̂ )

where V̂ is the variance of the maximum likelihood estimate of θ. The acceptance ratio is then

calculated as

r =
Lp(θ?,x(i−1))π(θ?)

Lp(θ(i−1),x(i−1))π(θ(i−1))

where the prior π(θ) is taken to be a Normal distribution with mean 0 and standard devia-

tion 10.

2. Sampling x. We sample the vector x as a block of length T , where T is the number of obser-

vations we have for a given county. The prior distribution for x is the posterior distribution

specified in equation (6) and derived from fitting the spatial model described in Section 3. For

the proposal distribution, we use the distribution in (6) so that the proposal equals the prior.

Given a proposal value x?, we compute the acceptance ratio, which in this case is simply the

profile likelihood ratio,

r =
Lp(θ(i−1),x?)

Lp(θ(i−1),x(i−1))

Each sampler was run for 10,000 iterations. Convergence of the chains was diagnosed by estimating

Monte Carlo standard errors of the parameters using the method of batch means described in Jones

et al. (2006).
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Figure 5: Percent increase in cardiovascular hospital admissions per 1 interquartile range

(1.35 µg/m3) increase in ammonium estimated using maximum likelihood (open circle), regression

calibration (triangle), and the two-stage Bayesian model (filled circle).
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Figure 6: Percent increase in cardiovascular hospital admissions per 1 interquartile range

(1.64 µg/m3) increase in nitrate estimated using maximum likelihood (open circle), regression cali-

bration (triangle), and the two-stage Bayesian model (filled circle).

32

http://biostats.bepress.com/jhubiostat/paper176



●

●

−6

−4

−2

0

Los Angeles, CA

1:3

%
 in

cr
ea

se

●

●

−2

−1

0

1

2

3

Cook, IL

1:3

%
 in

cr
ea

se

●
●

−4

−2

0

2

4

6

Maricopa, AZ

1:3

%
 in

cr
ea

se

● ●

−2

0

2

4

6

San Diego, CA

1:3

%
 in

cr
ea

se

●
●

−1

0

1

2

3

Queens, NY

1:3

%
 in

cr
ea

se

● ●

−4

−2

0

2

4

6

Dallas, TX

1:3

%
 in

cr
ea

se

●

●

0
1
2
3
4
5
6

Wayne, MI

1:3

%
 in

cr
ea

se

●
●

−5

0

5

King, WA

1:3

%
 in

cr
ea

se

●
●

−4

−2

0

2

4

6

Santa Clara, CA

1:3

%
 in

cr
ea

se

● ●

−20

0

20

40

Broward, FL

1:3

%
 in

cr
ea

se

●
●

−6

−4

−2

0

2

4

Riverside, CA

1:3

%
 in

cr
ea

se

●

●

−4

−2

0

2

4

New York, NY

1:3

%
 in

cr
ea

se

●

●

0

2

4

6

Philadelphia, PA

1:3

%
 in

cr
ea

se

●

●

−1

0

1

2

3

4

Cuyahoga, OH

1:3

%
 in

cr
ea

se

● ●

−5

0

5

Clark, NV

1:3

%
 in

cr
ea

se

●
●

0
1
2
3
4
5
6

Bronx, NY

1:3

%
 in

cr
ea

se

●

●

0

2

4

6

8

Allegheny, PA

%
 in

cr
ea

se

●

●

0

2

4

6

8

Sacramento, CA

%
 in

cr
ea

se

●

●

−10
−5

0
5

10
15
20

Hennepin, MN

%
 in

cr
ea

se

●
●

−5

0

5

10

Franklin, OH

%
 in

cr
ea

se

Organic Carbon Matter

Figure 7: Percent increase in cardiovascular hospital admissions per 1 interquartile range

(3.18 µg/m3) increase in organic carbon matter estimated using maximum likelihood (open circle),

regression calibration (triangle), and the two-stage Bayesian model (filled circle).
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Figure 8: Percent increase in cardiovascular hospital admissions per 1 interquartile range

(0.11 µg/m3) increase in sodium ion estimated using maximum likelihood (open circle), regression

calibration (triangle), and the two-stage Bayesian model (filled circle).

34

http://biostats.bepress.com/jhubiostat/paper176



●

●

−2
−1

0
1
2
3
4

Los Angeles, CA

1:3

%
 in

cr
ea

se

●

●

0.0

0.5

1.0

1.5

Cook, IL

1:3

%
 in

cr
ea

se

●
●

−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

Maricopa, AZ

1:3

%
 in

cr
ea

se

●
●

−1

0

1

2

3

San Diego, CA

1:3

%
 in

cr
ea

se

● ●

−2

−1

0

1

2

3

4

Queens, NY

1:3

%
 in

cr
ea

se

●

●

−0.5

0.0

0.5

1.0

Dallas, TX

1:3

%
 in

cr
ea

se

●
●

−1

0

1

2

3

Wayne, MI

1:3

%
 in

cr
ea

se ● ●

−15

−10

−5

0

King, WA

1:3

%
 in

cr
ea

se

●

●

−6

−4

−2

0

2

Santa Clara, CA

1:3

%
 in

cr
ea

se

●

●

−6

−4

−2

0

2

Broward, FL

1:3

%
 in

cr
ea

se

●
●

−2

−1

0

1

2

3

Riverside, CA

1:3

%
 in

cr
ea

se

●

●

−4

−2

0

2

4

6

8

New York, NY

1:3

%
 in

cr
ea

se

●

●

0

1

2

3

4

Philadelphia, PA

1:3

%
 in

cr
ea

se

●

●

−1

0

1

2

Cuyahoga, OH

1:3

%
 in

cr
ea

se

● ●

−4

−2

0

2

4

Clark, NV

1:3

%
 in

cr
ea

se

●
●

−4

−2

0

2

4

Bronx, NY

1:3

%
 in

cr
ea

se

● ●

−3

−2

−1

0

1

Allegheny, PA

%
 in

cr
ea

se

● ●

−3
−2
−1

0
1
2
3
4

Sacramento, CA

%
 in

cr
ea

se

●

●

−2
0
2
4
6
8

10
12

Hennepin, MN

%
 in

cr
ea

se

●
●

−2
0
2
4
6
8

Franklin, OH

%
 in

cr
ea

se

Silicon

Figure 9: Percent increase in cardiovascular hospital admissions per 1 interquartile range

(0.07 µg/m3) increase in silicon estimated using maximum likelihood (open circle), regression cali-

bration (triangle), and the two-stage Bayesian model (filled circle).
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