54,926 research outputs found
Cosmic Microwave Background constraints of decaying dark matter particle properties
If a component of cosmological dark matter is made up of massive particles -
such as sterile neutrinos - that decay with cosmological lifetime to emit
photons, the reionization history of the universe would be affected, and cosmic
microwave background anisotropies can be used to constrain such a decaying
particle model of dark matter. The optical depth depends rather sensitively on
the decaying dark matter particle mass m_{dm}, lifetime tau_{dm}, and the mass
fraction of cold dark matter f that they account for in this model. Assuming
that there are no other sources of reionization and using the WMAP 7-year data,
we find that 250 eV < m_{dm} < 1 MeV, whereas 2.23*10^3 yr < tau_{dm} <
1.23*10^18 yr. The best fit values for m_{dm} and tau_{dm}/f are 17.3 keV and
2.03*10^16 yr respectively.Comment: 17 pages, 3 figure
DNA nano-mechanics: how proteins deform the double helix
It is a standard exercise in mechanical engineering to infer the external
forces and torques on a body from its static shape and known elastic
properties. Here we apply this kind of analysis to distorted double-helical DNA
in complexes with proteins. We extract the local mean forces and torques acting
on each base-pair of bound DNA from high-resolution complex structures. Our
method relies on known elastic potentials and a careful choice of coordinates
of the well-established rigid base-pair model of DNA. The results are robust
with respect to parameter and conformation uncertainty. They reveal the complex
nano-mechanical patterns of interaction between proteins and DNA. Being
non-trivially and non-locally related to observed DNA conformations, base-pair
forces and torques provide a new view on DNA-protein binding that complements
structural analysis.Comment: accepted for publication in JCP; some minor changes in response to
review 18 pages, 5 figure + supplement: 4 pages, 3 figure
Clustering Memes in Social Media
The increasing pervasiveness of social media creates new opportunities to
study human social behavior, while challenging our capability to analyze their
massive data streams. One of the emerging tasks is to distinguish between
different kinds of activities, for example engineered misinformation campaigns
versus spontaneous communication. Such detection problems require a formal
definition of meme, or unit of information that can spread from person to
person through the social network. Once a meme is identified, supervised
learning methods can be applied to classify different types of communication.
The appropriate granularity of a meme, however, is hardly captured from
existing entities such as tags and keywords. Here we present a framework for
the novel task of detecting memes by clustering messages from large streams of
social data. We evaluate various similarity measures that leverage content,
metadata, network features, and their combinations. We also explore the idea of
pre-clustering on the basis of existing entities. A systematic evaluation is
carried out using a manually curated dataset as ground truth. Our analysis
shows that pre-clustering and a combination of heterogeneous features yield the
best trade-off between number of clusters and their quality, demonstrating that
a simple combination based on pairwise maximization of similarity is as
effective as a non-trivial optimization of parameters. Our approach is fully
automatic, unsupervised, and scalable for real-time detection of memes in
streaming data.Comment: Proceedings of the 2013 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining (ASONAM'13), 201
The Struve-Sahade effect in the optical spectra of O-type binaries I. Main-sequence systems
We present a spectroscopic analysis of four massive binary systems that are
known or are good candidates to display the Struve-Sahade effect (defined as
the apparent strengthening of the secondary spectrum of the binary when the
star is approaching, and the corresponding weakening of the lines when it is
receding).
We use high resolution optical spectra to determine new orbital solutions and
spectral types of HD 165052, HD 100213, HD 159176 and DH Cep. As good knowledge
of the fundamental parameters of the considered systems is necessary to examine
the Struve-Sahade effect. We then study equivalent width variations in the
lines of both components of these binaries during their orbital cycle.
In the case of these four systems, variations appear in the equivalent widths
of some lines during the orbital cycle, but the definition given above can any
longer be valid, since it is now clear that the effect modifies the primary
spectrum as much as the secondary spectrum. Furthermore, the lines affected,
and the way in which they are affected, depend on the considered system. For at
least two of them (HD 100213 and HD 159176) these variations probably reflect
the ellipsoidal variable nature of the system.Comment: 12 pages, 20 figures, in press A&
Not all the bots are created equal:the Ordering Turing Test for the labelling of bots in MMORPGs
This article contributes to the research on bots in Social Media. It takes as its starting point an emerging perspective which proposes that we should abandon the investigation of the Turing Test and the functional aspects of bots in favor of studying the authentic and cooperative relationship between humans and bots. Contrary to this view, this article argues that Turing Tests are one of the ways in which authentic relationships between humans and bots take place. To understand this, this article introduces the concept of Ordering Turing Tests: these are sort of Turing Tests proposed by social actors for purposes of achieving social order when bots produce deviant behavior. An Ordering Turing Test is method for labeling deviance, whereby social actors can use this test to tell apart rule-abiding humans and rule-breaking bots. Using examples from Massively Multiplayer Online Role-Playing Games, this article illustrates how Ordering Turing Tests are proposed and justified by players and service providers. Data for the research comes from scientific literature on Machine Learning proposed for the identification of bots and from game forums and other player produced paratexts from the case study of the game Runescape
A 4-Component Dirac Theory of Ionization of Hydrogen Molecular Ion in a Super-Intense Laser Field
In this paper a 4-component Dirac theory of ionization of hydrogen molecular
ion in a super-intense laser field is developed. Simple analytic expressions
for the spin specific as well as the total ionization currents emitted from the
ground state of the ion are derived. The results are given for all polarization
and finite propagation vectors of the field. They apply for inner-shell
ionization of analogous heavier molecular ions as well. The presence of
molecular two-slit interference effect, first found in the non-relativistic
case, and the spin-flip ionization current, and an asymmetry of the up- and
down-spin currents similar to that predicted in the atomic case, are found also
to hold for the present relativistic molecular ionic case. Finally, the
possibility of controlling the dominant spin currents by selecting the
handedness of a circularly polarized incident laser field is pointed out.Comment: 7 pages, no figure
Resonant enhancements of high-order harmonic generation
Solving the one-dimensional time-dependent Schr\"odinger equation for simple
model potentials, we investigate resonance-enhanced high-order harmonic
generation, with emphasis on the physical mechanism of the enhancement. By
truncating a long-range potential, we investigate the significance of the
long-range tail, the Rydberg series, and the existence of highly excited states
for the enhancements in question. We conclude that the channel closings typical
of a short-range or zero-range potential are capable of generating essentially
the same effects.Comment: 7 pages revtex, 4 figures (ps files
- …