113 research outputs found

    Giardia duodenalis and Cryptosporidium occurrence in Australian sea lions (Neophoca cinerea) exposed to varied levels of human interaction

    Get PDF
    AbstractGiardia and Cryptosporidium are amongst the most common protozoan parasites identified as causing enteric disease in pinnipeds. A number of Giardia assemblages and Cryptosporidium species and genotypes are common in humans and terrestrial mammals and have also been identified in marine mammals. To investigate the occurrence of these parasites in an endangered marine mammal, the Australian sea lion (Neophoca cinerea), genomic DNA was extracted from faecal samples collected from wild populations (n = 271) in Southern and Western Australia and three Australian captive populations (n = 19). These were screened using PCR targeting the 18S rRNA of Giardia and Cryptosporidium. Giardia duodenalis was detected in 28 wild sea lions and in seven captive individuals. Successful sequencing of the 18S rRNA gene assigned 27 Giardia isolates to assemblage B and one to assemblage A, both assemblages commonly found in humans. Subsequent screening at the gdh and β-giardin loci resulted in amplification of only one of the 35 18S rRNA positive samples at the β-giardin locus. Sequencing at the β-giardin locus assigned the assemblage B 18S rRNA confirmed isolate to assemblage AI. The geographic distribution of sea lion populations sampled in relation to human settlements indicated that Giardia presence in sea lions was highest in populations less than 25 km from humans. Cryptosporidium was not detected by PCR screening in either wild colonies or captive sea lion populations. These data suggest that the presence of G. duodenalis in the endangered Australian sea lion is likely the result of dispersal from human sources. Multilocus molecular analyses are essential for the determination of G. duodenalis assemblages and subsequent inferences on transmission routes to endangered marine mammal populations

    A Bubbling Nearby Molecular Cloud: COMPLETE Shells in Perseus

    Full text link
    We present a study on the shells (and bubbles) in the Perseus molecular cloud using the COMPLETE survey large-scale 12CO(1-0) and 13CO(1-0) maps. The twelve shells reported here are spread throughout most of the Perseus cloud and have circular or arc-like morphologies with a range in radius of about 0.1 to 3 pc. Most of them have not been detected before most likely as maps of the region lacked the coverage and resolution needed to distinguish them. The majority of the shells are coincident with infrared nebulosity of similar shape and have a candidate powering source near the center. We suggest they are formed by the interaction of spherical or very wide-angle winds powered by young stars inside or near the Perseus molecular cloud -a cloud that is commonly considered to be mostly forming low-mass stars. Two of the twelve shells are powered by high-mass stars close to the cloud, while the others appear to be powered by low or intermediate mass stars in the cloud. We argue that winds with a mass loss rate of about 10^-8 to 10^-6 M_sun/yr are required to produce the observed shells. Our estimates indicate that the energy input rate from these stellar winds is similar to the turbulence dissipation rate. We conclude that in Perseus the total energy input from both collimated protostellar outflows and powerful spherical winds from young stars is sufficient to maintain the turbulence in the molecular cloud. Large scale molecular line and IR continuum maps of a sample of clouds will help determine the frequency of this phenomenon in other star forming regions.Comment: 48 pages in total: 16 pages of text and references; 2 pages of tables; 30 figures (one page per figure). Accepted for publication in the Astrophysical Journa

    Metabolomic profiling to dissect the role of visceral fat in cardiometabolic health

    Get PDF
    OBJECTIVE: Abdominal obesity is associated with increased risk of type 2 diabetes (T2D) and cardiovascular disease. The aim of this study was to assess whether metabolomic markers of T2D and blood pressure (BP) act on these traits via visceral fat (VF) mass. METHODS: Metabolomic profiling of 280 fasting plasma metabolites was conducted on 2,401 women from TwinsUK. The overlap was assessed between published metabolites associated with T2D, insulin resistance, or BP and those that were identified to be associated with VF (after adjustment for covariates) measured by dual‐energy X‐ray absorptiometry. RESULTS: In addition to glucose, six metabolites were strongly associated with both VF mass and T2D: lactate and branched‐chain amino acids, all of them related to metabolism and the tricarboxylic acid cycle; on average, 38.5% of their association with insulin resistance was mediated by their association with VF mass. Five metabolites were associated with BP and VF mass including the inflammation‐associated peptide HWESASXX, the steroid hormone androstenedione, lactate, and palmitate. On average, 29% of their effect on BP was mediated by their association with VF mass. CONCLUSIONS: Little overlap was found between the metabolites associated with BP and those associated with insulin resistance via VF mass

    Signatures of early frailty in the gut microbiota

    Get PDF
    Background: Frailty is arguably the biggest problem associated with population ageing, and associates with gut microbiome composition in elderly and care-dependent individuals. Here we characterize frailty associations with the gut microbiota in a younger community dwelling population, to identify targets for intervention to encourage healthy ageing. Method: We analysed 16S rRNA gene sequence data derived from faecal samples obtained from 728 female twins. Frailty was quantified using a frailty index (FI). Mixed effects models were used to identify associations with diversity, operational taxonomic units (OTUs) and taxa. OTU associations were replicated in the Eldermet cohort. Phenotypes were correlated with modules of OTUs collapsed by co-occurrence. Results: Frailty negatively associated with alpha diversity of the gut microbiota. Models considering a number of covariates identified 637 OTUs associated with FI. Twenty-two OTU associations were significant independent of alpha diversity. Species more abundant with frailty included Eubacterium dolichum and Eggerthella lenta. A Faecalibacterium prausnitzii OTU was less abundant in frailer individuals, and retained significance in discordant twin analysis. Sixty OTU associations were replicated in the Eldermet cohort. OTU co-occurrence modules had mutually exclusive associations between frailty and alpha diversity. Conclusions: There was a striking negative association between frailty and gut microbiota diversity, underpinned by specific taxonomic associations. Whether these relationships are causal or consequential is unknown. Nevertheless, they represent targets for diagnostic surveillance, or for intervention studies to improve vitality in ageing

    The Bones of the Milky Way

    Get PDF
    The very long, thin infrared dark cloud "Nessie" is even longer than had been previously claimed, and an analysis of its Galactic location suggests that it lies directly in the Milky Way’s mid-plane, tracing out a highly elongated bone-like feature within the prominent Scutum-Centaurus spiral arm. Re-analysis of mid-infrared imagery from the Spitzer Space Telescope shows that this IRDC is at least 2, and possibly as many as 8 times longer than had originally been claimed by Nessie’s discoverers, Jackson et al. (2010); its aspect ratio is therefore at least 150:1, and possibly as large as 800:1. A careful accounting for both the Sun’s offset from the Galactic plane (∼25 pc) and the Galactic center’s offset from the (lII,bIIl^{II},b^{II})=(0,0) position defined by the IAU in 1959 shows that the latitude of the true Galactic mid-plane at the 3.1 kpc distance to the Scutum-Centaurus Arm is not b=0, but instead closer to b=−0.5, which is the latitude of Nessie to within a few pc. Apparently, Nessie lies in the Galactic mid-plane. An analysis of the radial velocities of low-density (CO) and high-density (NH3NH_3) gas associated with the Nessie dust feature suggests that Nessie runs along the Scutum-Centaurus Arm in position-position-velocity space, which means it likely forms a dense ‘spine’ of the arm in real space as well. No galaxy-scale simulation to date has the spatial resolution to predict a Nessie-like feature, but extant simulations do suggest that highly elongated over-dense filaments should be associated with a galaxy’s spiral arms. Nessie is situated in the closest major spiral arm to the Sun toward the inner Galaxy, and appears almost perpendicular to our line of sight, making it the easiest feature of its kind to detect from our location (a shadow of an Arm’s bone, illuminated by the Galaxy beyond). Although the Sun’s (∼25 pc) offset from the Galactic plane is not large in comparison with the half-thickness of the plane as traced by Population I objects such as GMCs and HII regions (∼200 pc; Rix et al. (2013)), it may be significant compared with an extremely thin layer that might be traced out by Nessie-like ”bones“ of the Milky Way. Future high-resolution extinction and molecular line data may therefore allow us to exploit the Sun’s position above the plane to gain a (very foreshortened) view "from above” of dense gas in Milky Way’s disk and its structure.Astronom

    Heritable components of the human fecal microbiome are associated with visceral fat

    Get PDF
    Background: Variation in the human fecal microbiota has previously been associated with body mass index (BMI). Although obesity is a global health burden, the accumulation of abdominal visceral fat is the specific cardio-metabolic disease risk factor. Here, we explore links between the fecal microbiota and abdominal adiposity using body composition as measured by dual-energy X-ray absorptiometry in a large sample of twins from the TwinsUK cohort, comparing fecal 16S rRNA diversity profiles with six adiposity measures.Results: We profile six adiposity measures in 3666 twins and estimate their heritability, finding novel evidence for strong genetic effects underlying visceral fat and android/gynoid ratio. We confirm the association of lower diversity of the fecal microbiome with obesity and adiposity measures, and then compare the association between fecal microbial composition and the adiposity phenotypes in a discovery subsample of twins. We identify associations between the relative abundances of fecal microbial operational taxonomic units (OTUs) and abdominal adiposity measures. Most of these results involve visceral fat associations, with the strongest associations between visceral fat and Oscillospira members. Using BMI as a surrogate phenotype, we pursue replication in independent samples from three population-based cohorts including American Gut, Flemish Gut Flora Project and the extended TwinsUK cohort. Meta-analyses across the replication samples indicate that 8 OTUs replicate at a stringent threshold across all cohorts, while 49 OTUs achieve nominal significance in at least one replication sample. Heritability analysis of the adiposity-associated microbial OTUs prompted us to assess host genetic-microbe interactions at obesity-associated human candidate loci. We observe significant associations of adiposity-OTU abundances with host genetic variants in the FHIT, TDRG1 and ELAVL4 genes, suggesting a potential role for host genes to mediate the link between the fecal microbiome and obesity.Conclusions: Our results provide novel insights into the role of the fecal microbiota in cardio-metabolic disease with clear potential for prevention and novel therapies
    corecore